5G Network Deployment Planning Using Metaheuristic Approaches

Telecom Pub Date : 2024-07-09 DOI:10.3390/telecom5030030
Binod Sapkota, Rijan Ghimire, Paras Pujara, Shashank Ghimire, Ujjwal Shrestha, Roshani Ghimire, Babu R. Dawadi, Shashidhar R. Joshi
{"title":"5G Network Deployment Planning Using Metaheuristic Approaches","authors":"Binod Sapkota, Rijan Ghimire, Paras Pujara, Shashank Ghimire, Ujjwal Shrestha, Roshani Ghimire, Babu R. Dawadi, Shashidhar R. Joshi","doi":"10.3390/telecom5030030","DOIUrl":null,"url":null,"abstract":"The present research focuses on optimizing 5G base station deployment and visualization, addressing the escalating demands for high data rates and low latency. The study compares the effectiveness of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Grey Wolf Optimizer (GWO) in both Urban Macro (UMa) and Remote Macro (RMa) deployment scenarios that overcome the limitations of the current method of 5G deployment, which involves adopting Non-Standalone (NSA) architecture. Emphasizing population density, the optimization process eliminates redundant base stations for enhanced efficiency. Results indicate that PSO and GA strike the optimal balance between coverage and capacity, offering valuable insights for efficient network planning. The study includes a comparison of 28 GHz and 3.6 GHz carrier frequencies for UMa, highlighting their respective efficiencies. Additionally, the research proposes a 2.6 GHz carrier frequency for Remote Macro Antenna (RMa) deployment, enhancing 5G Multi-Tier Radio Access Network (RAN) planning and providing practical solutions for achieving infrastructure reduction and improved network performance in a specific geographical context.","PeriodicalId":509646,"journal":{"name":"Telecom","volume":"113 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecom","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/telecom5030030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present research focuses on optimizing 5G base station deployment and visualization, addressing the escalating demands for high data rates and low latency. The study compares the effectiveness of Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), and Grey Wolf Optimizer (GWO) in both Urban Macro (UMa) and Remote Macro (RMa) deployment scenarios that overcome the limitations of the current method of 5G deployment, which involves adopting Non-Standalone (NSA) architecture. Emphasizing population density, the optimization process eliminates redundant base stations for enhanced efficiency. Results indicate that PSO and GA strike the optimal balance between coverage and capacity, offering valuable insights for efficient network planning. The study includes a comparison of 28 GHz and 3.6 GHz carrier frequencies for UMa, highlighting their respective efficiencies. Additionally, the research proposes a 2.6 GHz carrier frequency for Remote Macro Antenna (RMa) deployment, enhancing 5G Multi-Tier Radio Access Network (RAN) planning and providing practical solutions for achieving infrastructure reduction and improved network performance in a specific geographical context.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用元智方法进行 5G 网络部署规划
本研究的重点是优化 5G 基站部署和可视化,满足对高数据速率和低延迟不断升级的需求。研究比较了遗传算法(GA)、粒子群优化(PSO)、模拟退火(SA)和灰狼优化器(GWO)在城市宏基站(UMa)和远程宏基站(RMa)部署场景中的有效性,克服了当前 5G 部署方法的局限性,即采用非独立基站(NSA)架构。优化过程强调人口密度,消除冗余基站以提高效率。结果表明,PSO 和 GA 实现了覆盖范围和容量之间的最佳平衡,为高效网络规划提供了宝贵的见解。研究包括对用于 UMa 的 28 GHz 和 3.6 GHz 载波频率进行比较,突出强调了它们各自的效率。此外,研究还提出了用于远程宏天线(RMa)部署的 2.6 GHz 载波频率,从而加强了 5G 多层无线接入网(RAN)规划,并为在特定地理环境下减少基础设施和提高网络性能提供了实用的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure-by-Design Real-Time Internet of Medical Things Architecture: e-Health Population Monitoring (RTPM) 5G Network Deployment Planning Using Metaheuristic Approaches Studying the Impact of Different TCP DoS Attacks on the Parameters of VoIP Streams Bi-GRU-APSO: Bi-Directional Gated Recurrent Unit with Adaptive Particle Swarm Optimization Algorithm for Sales Forecasting in Multi-Channel Retail Enhancing Beamforming Efficiency Utilizing Taguchi Optimization and Neural Network Acceleration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1