Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization

IF 1.6 Q4 ENERGY & FUELS IET Energy Systems Integration Pub Date : 2024-07-08 DOI:10.1049/esi2.12158
Luyu Tian, Chaoyu Dong, Rui Wang, Yunfei Mu, Hongjie Jia
{"title":"Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization","authors":"Luyu Tian, Chaoyu Dong, Rui Wang, Yunfei Mu, Hongjie Jia","doi":"10.1049/esi2.12158","DOIUrl":null,"url":null,"abstract":"Lithium‐ion batteries are widely employed in electric vehicles, power grid energy storage, and other fields. Thermal fault diagnostics for battery packs is crucial to preventing thermal runaway from impairing the safe operation and extended cycle service life of batteries. Therefore, a lithium‐ion battery thermal fault diagnosis model based on deep learning algorithms is presented, which includes three parts: autoencoder denoising network, coarse mask generator, and mask precise adjustment. Autoencoder denoising network can reduce data noise during thermal imaging acquisition, improve the anti‐interference ability of diagnostic models, and ensure the accuracy of thermal runaway diagnosis. A two‐stage diagnostic structure is then formulated by the coarse mask generator and mask precise adjustment, which enable quick identification, categorisation, and localisation of thermal fault battery cells. According to the test results, the segmentation boundary is more distinct and is capable of matching the original image's level. The recognition accuracy of the thermal diagnosis model for faulty batteries is close to 100%. After denoising by the autoencoder, the prediction results improved by 22% compared to non‐local mean denoising and by about 32% compared to noisy images.","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/esi2.12158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium‐ion batteries are widely employed in electric vehicles, power grid energy storage, and other fields. Thermal fault diagnostics for battery packs is crucial to preventing thermal runaway from impairing the safe operation and extended cycle service life of batteries. Therefore, a lithium‐ion battery thermal fault diagnosis model based on deep learning algorithms is presented, which includes three parts: autoencoder denoising network, coarse mask generator, and mask precise adjustment. Autoencoder denoising network can reduce data noise during thermal imaging acquisition, improve the anti‐interference ability of diagnostic models, and ensure the accuracy of thermal runaway diagnosis. A two‐stage diagnostic structure is then formulated by the coarse mask generator and mask precise adjustment, which enable quick identification, categorisation, and localisation of thermal fault battery cells. According to the test results, the segmentation boundary is more distinct and is capable of matching the original image's level. The recognition accuracy of the thermal diagnosis model for faulty batteries is close to 100%. After denoising by the autoencoder, the prediction results improved by 22% compared to non‐local mean denoising and by about 32% compared to noisy images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于热故障检测和定位的抗干扰锂离子电池智能感知技术
锂离子电池广泛应用于电动汽车、电网储能和其他领域。电池组的热故障诊断对于防止热失控影响电池的安全运行和延长循环使用寿命至关重要。因此,本文提出了一种基于深度学习算法的锂离子电池热故障诊断模型,包括三个部分:自动编码器去噪网络、粗掩码生成器和掩码精确调整。自动编码器去噪网络可以降低热成像采集过程中的数据噪声,提高诊断模型的抗干扰能力,确保热失控诊断的准确性。然后,通过粗掩膜生成器和掩膜精确调整,形成两阶段诊断结构,从而实现对热故障电池单元的快速识别、分类和定位。测试结果表明,分割边界更加清晰,能够与原始图像的层次相匹配。热诊断模型对故障电池的识别准确率接近 100%。使用自动编码器去噪后,预测结果比非局部均值去噪提高了 22%,比噪声图像提高了约 32%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
期刊最新文献
Experimental and model analysis of the thermoelectric characteristics of serial arc in prismatic lithium‐ion batteries Low‐carbon economic operation of multi‐energy microgrid based on multi‐level robust optimisation Anti‐interference lithium‐ion battery intelligent perception for thermal fault detection and localization A reinforcement learning method for two-layer shipboard real-time energy management considering battery state estimation Estimation and prediction method of lithium battery state of health based on ridge regression and gated recurrent unit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1