A Mathematical Framework for Simultaneous Voltage and Frequency Regulation in Distributed Generator (DG) Grid-Interfaced Systems

Chandra Sekhar Mishra, Dr. Ranjan Kumar, Dr. Asit Mohanty, Dr. Prakash K Ray, Dr. Pragyan P Mohanty, Dr. Sunil Kumar Gupta
{"title":"A Mathematical Framework for Simultaneous Voltage and Frequency Regulation in Distributed Generator (DG) Grid-Interfaced Systems","authors":"Chandra Sekhar Mishra, Dr. Ranjan Kumar, Dr. Asit Mohanty, Dr. Prakash K Ray, Dr. Pragyan P Mohanty, Dr. Sunil Kumar Gupta","doi":"10.52783/cana.v31.981","DOIUrl":null,"url":null,"abstract":"Recent advancements in distributed generation (DG) systems interfaced with microgrids necessitate robust regulatory mechanisms to manage inherent power fluctuations, particularly from renewable sources like photovoltaics. These fluctuations can significantly impact the stability and efficiency of microgrids. This paper introduces a novel mathematical framework for simultaneous voltage and frequency regulation, aimed at addressing power quality and stability challenges in DG-grid interfaced systems. Utilizing a combination of algebraic topology and dynamical systems theory, we develop a model that incorporates an adaptive virtual frequency-impedance control loop. This mathematical approach allows for the analytical examination of the stability properties of the system and the design of control strategies that guarantee optimal operational thresholds. We extend the conventional droop control mechanisms with a rigorously defined Simultaneous Voltage and Frequency Correction Scheme (SVFCS), providing a theoretical underpinning that supports experimental observations. The efficacy of the proposed model is validated through numerical simulations that demonstrate adherence to the IEEE 519 standard, ensuring reduced harmonic distortion and enhanced system reliability. Our results highlight the potential for these mathematical methods to provide foundational insights into the control and optimization of microgrid operations. ","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in distributed generation (DG) systems interfaced with microgrids necessitate robust regulatory mechanisms to manage inherent power fluctuations, particularly from renewable sources like photovoltaics. These fluctuations can significantly impact the stability and efficiency of microgrids. This paper introduces a novel mathematical framework for simultaneous voltage and frequency regulation, aimed at addressing power quality and stability challenges in DG-grid interfaced systems. Utilizing a combination of algebraic topology and dynamical systems theory, we develop a model that incorporates an adaptive virtual frequency-impedance control loop. This mathematical approach allows for the analytical examination of the stability properties of the system and the design of control strategies that guarantee optimal operational thresholds. We extend the conventional droop control mechanisms with a rigorously defined Simultaneous Voltage and Frequency Correction Scheme (SVFCS), providing a theoretical underpinning that supports experimental observations. The efficacy of the proposed model is validated through numerical simulations that demonstrate adherence to the IEEE 519 standard, ensuring reduced harmonic distortion and enhanced system reliability. Our results highlight the potential for these mathematical methods to provide foundational insights into the control and optimization of microgrid operations. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式发电机(DG)并网系统中同时调节电压和频率的数学框架
与微电网连接的分布式发电(DG)系统的最新进展要求建立健全的监管机制,以管理固有的电力波动,尤其是来自光伏等可再生能源的电力波动。这些波动会严重影响微电网的稳定性和效率。本文介绍了一种新颖的电压和频率同步调节数学框架,旨在解决 DG 电网接口系统中的电能质量和稳定性难题。我们结合代数拓扑学和动力系统理论,建立了一个包含自适应虚拟频率阻抗控制环路的模型。通过这种数学方法,我们可以对系统的稳定性能进行分析检验,并设计出能保证最佳运行阈值的控制策略。我们利用严格定义的同步电压和频率校正方案(SVFCS)扩展了传统的下垂控制机制,提供了支持实验观察的理论基础。通过数值模拟验证了所提模型的功效,证明其符合 IEEE 519 标准,确保降低谐波失真并提高系统可靠性。我们的研究结果凸显了这些数学方法的潜力,可为微电网运行的控制和优化提供基础性见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network Matthews Partial Metric Space Using F-Contraction A Common Fixed Point Result in Menger Space Some Applications via Coupled Fixed Point Theorems for (????, ????)-H-Contraction Mappings in Partial b- Metric Spaces ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1