ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems

Harshali Bhuwad, Dr.Jagdish.W.Bakal
{"title":"ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems","authors":"Harshali Bhuwad, Dr.Jagdish.W.Bakal","doi":"10.52783/cana.v31.1059","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel recommendation system model, the Attentive Recurrent Recommender Network (ARRN), that addresses the challenge of incorporating demographic information into recommendations. ARRN leverages user-item interaction data along with age information from the data set to deliver personalized recommendations specifically tailored to different age groups. The approach utilizes embedding techniques and semantic analysis to capture user preferences and behaviors associated with their age. An attention mechanism prioritizes relevant features based on user age groups, enabling ARRN to dynamically adapt recommendations for users with limited interaction history. The paper presents a comprehensive evaluation of ARRN’s performance compared to existing state-of-the-art recommendation algorithms. The results demonstrate that ARRN outperforms existing approaches, particularly for users with limited interaction history, by effectively mitigating the cold-start problem in age-sensitive product domains.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.1059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel recommendation system model, the Attentive Recurrent Recommender Network (ARRN), that addresses the challenge of incorporating demographic information into recommendations. ARRN leverages user-item interaction data along with age information from the data set to deliver personalized recommendations specifically tailored to different age groups. The approach utilizes embedding techniques and semantic analysis to capture user preferences and behaviors associated with their age. An attention mechanism prioritizes relevant features based on user age groups, enabling ARRN to dynamically adapt recommendations for users with limited interaction history. The paper presents a comprehensive evaluation of ARRN’s performance compared to existing state-of-the-art recommendation algorithms. The results demonstrate that ARRN outperforms existing approaches, particularly for users with limited interaction history, by effectively mitigating the cold-start problem in age-sensitive product domains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ARRN:利用人口统计学语境改进混合推荐系统中的语义个性化
本文提出了一种新颖的推荐系统模型--注意递归推荐网络(ARRN),以解决将人口信息纳入推荐的难题。ARRN 利用用户与项目的交互数据以及数据集中的年龄信息,提供专门针对不同年龄组的个性化推荐。该方法利用嵌入技术和语义分析来捕捉与年龄相关的用户偏好和行为。注意力机制会根据用户年龄组对相关特征进行优先排序,从而使 ARRN 能够为交互历史有限的用户动态调整推荐。本文对 ARRN 的性能进行了全面评估,并与现有的最先进推荐算法进行了比较。结果表明,ARRN 通过有效缓解年龄敏感产品领域的冷启动问题,其性能优于现有方法,尤其是针对互动历史有限的用户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
An Comparison of Different Cluster Head Selection Techniques for Wireless Sensor Network Matthews Partial Metric Space Using F-Contraction A Common Fixed Point Result in Menger Space Some Applications via Coupled Fixed Point Theorems for (????, ????)-H-Contraction Mappings in Partial b- Metric Spaces ARRN: Leveraging Demographic Context for Improved Semantic Personalization in Hybrid Recommendation Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1