C. Annadurai, I. Nelson, K. Nirmala Devi, G. Thavasi Raja
{"title":"Dynamic multipath routing for energy‐efficient and reliable communication in 6G networks with MIMO","authors":"C. Annadurai, I. Nelson, K. Nirmala Devi, G. Thavasi Raja","doi":"10.1002/itl2.559","DOIUrl":null,"url":null,"abstract":"In the era of 6G networks, Multiple Input Multiple Output (MIMO) technology offers unprecedented opportunities for high‐throughput and low‐latency communication. Existing communication frameworks, however, have difficulty optimizing both energy efficiency and reliability at the same time. In most cases, conventional routing protocols fail to meet the needs of MIMO systems, making them inefficient and prone to reliability problems due to their inability to dynamically adapt to different network conditions. This research addresses the intricate interplay between energy efficiency and reliability within the context of 6G networks with MIMO. The motivation for this research arises from the imperative to unlock the full potential of 6G networks with MIMO for achieving energy‐efficient and reliable communication. With the advancement of communication technology, seamless connectivity, minimal energy consumption, and robust reliability become increasingly critical. Currently, solutions cannot adapt dynamically to the diverse and dynamic conditions of a 6G environment. Through this research, we aim to bridge this gap, enhancing 6G network performance and sustainability with unprecedented gains in energy efficiency and reliability. We have developed the Dynamic Multipath Routing (DMR) algorithm by harnessing the advanced features of MIMO technology. The DMR algorithm strategically chooses paths to minimize the effects of fading, interference, and channel impairments, creating a resilient communication network. This improvement is essential for meeting the demanding connectivity needs of various 6G applications, covering ultra‐reliable low‐latency communication and massive machine‐type communication.","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/itl2.559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of 6G networks, Multiple Input Multiple Output (MIMO) technology offers unprecedented opportunities for high‐throughput and low‐latency communication. Existing communication frameworks, however, have difficulty optimizing both energy efficiency and reliability at the same time. In most cases, conventional routing protocols fail to meet the needs of MIMO systems, making them inefficient and prone to reliability problems due to their inability to dynamically adapt to different network conditions. This research addresses the intricate interplay between energy efficiency and reliability within the context of 6G networks with MIMO. The motivation for this research arises from the imperative to unlock the full potential of 6G networks with MIMO for achieving energy‐efficient and reliable communication. With the advancement of communication technology, seamless connectivity, minimal energy consumption, and robust reliability become increasingly critical. Currently, solutions cannot adapt dynamically to the diverse and dynamic conditions of a 6G environment. Through this research, we aim to bridge this gap, enhancing 6G network performance and sustainability with unprecedented gains in energy efficiency and reliability. We have developed the Dynamic Multipath Routing (DMR) algorithm by harnessing the advanced features of MIMO technology. The DMR algorithm strategically chooses paths to minimize the effects of fading, interference, and channel impairments, creating a resilient communication network. This improvement is essential for meeting the demanding connectivity needs of various 6G applications, covering ultra‐reliable low‐latency communication and massive machine‐type communication.