A. Attetkov, P. A. Vlasov, I. K. Volkov, A. Kotovich
{"title":"Realizability of the Mode of Temperature Control of the Boundary of an Isotropic Half-Space with a Film Coating","authors":"A. Attetkov, P. A. Vlasov, I. K. Volkov, A. Kotovich","doi":"10.31857/s0002331024010082","DOIUrl":null,"url":null,"abstract":"We stated the problem of determining the temperature field of an isotropic half-space with a film-coated surface while undergoing heat exchange with the environment. A non-steady-state heat exchange mode with time-varying heat transfer coefficient and ambient temperature is researched. We identified sufficient conditions, the fulfilment of which makes it possible to implement a self-similar heat exchange process in the analyzed system. The physical properties of the studied self-similar process are qualitatively investigated and we established its specific features. The possibility of realizing the mode of temperature control of the boundary of an isotropic half-space with a film coating is theoretically substantiated in case of non-steady-state heat exchange with the environment.","PeriodicalId":437026,"journal":{"name":"Известия Российской академии наук. Энергетика","volume":" 51","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Известия Российской академии наук. Энергетика","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/s0002331024010082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We stated the problem of determining the temperature field of an isotropic half-space with a film-coated surface while undergoing heat exchange with the environment. A non-steady-state heat exchange mode with time-varying heat transfer coefficient and ambient temperature is researched. We identified sufficient conditions, the fulfilment of which makes it possible to implement a self-similar heat exchange process in the analyzed system. The physical properties of the studied self-similar process are qualitatively investigated and we established its specific features. The possibility of realizing the mode of temperature control of the boundary of an isotropic half-space with a film coating is theoretically substantiated in case of non-steady-state heat exchange with the environment.