{"title":"Mitigating urban heat island through neighboring rural land cover","authors":"Miao Yang, Chen Ren, Haorui Wang, Junqi Wang, Zhuangbo Feng, Prashant Kumar, Fariborz Haghighat, Shi-Jie Cao","doi":"10.1038/s44284-024-00091-z","DOIUrl":null,"url":null,"abstract":"Globally, the deteriorating Urban Heat Island (UHI) effect poses a significant threat to human health and undermines ecosystem stability. UHI mitigation strategies have been investigated and utilized extensively within cities by the provision of green, blue or gray infrastructures. However, urban land is precious and limited for these interventions, making it challenging to address this issue. Neighboring rural land cover may serve as a cooling source and have a great potential to mitigate UHI through processes such as heat absorption and circulation. This study aims to address the following questions: (1) what is the location of neighboring rural land cover to effectively mitigate UHI for the entire city and (2) what are the key parameters of the landscape. We investigated the quantitative and qualitative relationships between rural land cover and UHI, drawing on geographical and environmental data from 30 Chinese cities between 2000 and 2020. We found that the rural land cover extending outward from the urban boundary, approximately half of the equivalent diameter of city, had the most pronounced impact on UHI mitigation. The number and adjacency of landscape patches (a patch is a homogeneous and nonlinear basic unit of a landscape pattern, distinct from its surroundings) emerged as two key factors in mitigating UHI, with their individual potential to reduce UHI by up to 0.5 °C. The proposed recommendations were to avoid fragmentation and enhance shape complexity and distribution uniformity of patches. This work opens new avenues for addressing high-temperature urban catastrophes from a rural perspective, which may also promote coordinated development between urban and rural areas. This study considers how urban heat islands are affected by rural regions neighboring cities, which may be a source of cooling for city centers. An analysis of 30 Chinese cities from 2000 to 2020 makes advances in defining urban–rural boundaries and specifying the importance of maintaining diverse, rich, dense rural land cover to mitigate urban heat.","PeriodicalId":501700,"journal":{"name":"Nature Cities","volume":"1 8","pages":"522-532"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44284-024-00091-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Cities","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44284-024-00091-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, the deteriorating Urban Heat Island (UHI) effect poses a significant threat to human health and undermines ecosystem stability. UHI mitigation strategies have been investigated and utilized extensively within cities by the provision of green, blue or gray infrastructures. However, urban land is precious and limited for these interventions, making it challenging to address this issue. Neighboring rural land cover may serve as a cooling source and have a great potential to mitigate UHI through processes such as heat absorption and circulation. This study aims to address the following questions: (1) what is the location of neighboring rural land cover to effectively mitigate UHI for the entire city and (2) what are the key parameters of the landscape. We investigated the quantitative and qualitative relationships between rural land cover and UHI, drawing on geographical and environmental data from 30 Chinese cities between 2000 and 2020. We found that the rural land cover extending outward from the urban boundary, approximately half of the equivalent diameter of city, had the most pronounced impact on UHI mitigation. The number and adjacency of landscape patches (a patch is a homogeneous and nonlinear basic unit of a landscape pattern, distinct from its surroundings) emerged as two key factors in mitigating UHI, with their individual potential to reduce UHI by up to 0.5 °C. The proposed recommendations were to avoid fragmentation and enhance shape complexity and distribution uniformity of patches. This work opens new avenues for addressing high-temperature urban catastrophes from a rural perspective, which may also promote coordinated development between urban and rural areas. This study considers how urban heat islands are affected by rural regions neighboring cities, which may be a source of cooling for city centers. An analysis of 30 Chinese cities from 2000 to 2020 makes advances in defining urban–rural boundaries and specifying the importance of maintaining diverse, rich, dense rural land cover to mitigate urban heat.