Skutterudite: Reproducibility of Thermoelectric Performance of P-type RyFe4-xCoxSb12 Bulky Compacts

IF 1.1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Korean Journal of Metals and Materials Pub Date : 2024-07-05 DOI:10.3365/kjmm.2024.62.7.542
Jin-Sol Kim, D. Shin, K. Park, Il-Ho Kim
{"title":"Skutterudite: Reproducibility of Thermoelectric Performance of P-type RyFe4-xCoxSb12 Bulky Compacts","authors":"Jin-Sol Kim, D. Shin, K. Park, Il-Ho Kim","doi":"10.3365/kjmm.2024.62.7.542","DOIUrl":null,"url":null,"abstract":"Skutterudite compounds have excellent thermoelectric performance in the intermediate-to high temperature range. Their lattice thermal conductivity can be reduced by intensifying phonon scattering through independent vibrations of the guest atoms, by filling the voids within the lattice. Furthermore, the thermoelectric figure of merit (ZT) can be enhanced by optimizing the carrier concentration through charge compensation between transition elements. In this study, we compared the thermoelectric properties of p-type filled skutterudite materials, R<sub>y</sub>Fe<sub>4-x</sub>Co<sub>x</sub>Sb<sub>12</sub>, where R represents rare-earth elements (La/Ce/Pr/Nd/Yb), which were filled in the voids, and Co was charge-compensated at the Fe site. In the case of La<sub>y</sub>Fe<sub>4-x</sub>Co<sub>x</sub>Sb<sub>12</sub>, the introduction of La filling and Co doping led La<sub>0.9</sub>Fe<sub>3</sub>CoSb<sub>12</sub> to exhibit a high power factor and low thermal conductivity (ZT = 0.67 at 723 K). In the case of Ce<sub>y</sub>Fe<sub>4-x</sub>Co<sub>x</sub>Sb<sub>12</sub>, in addition to Ce filling, the substitution of Co for Fe resulted in additional lattice scattering, leading to a decrease in thermal conductivity. However, CeFe<sub>4</sub>Sb<sub>12</sub> exhibited a maximum performance of ZT = 0.70 at 823 K. In the case of Pr<sub>y</sub>Fe<sub>4-x</sub>Co<sub>x</sub>Sb<sub>12</sub>, the thermal conductivity was reduced through phonon scattering induced by Pr filling and additional lattice scattering caused by Co substitution; as a result, Pr<sub>0.8</sub>Fe<sub>3</sub>CoSb<sub>12</sub> exhibited ZT = 0.89 at 723 K. In the case of Nd<sub>y</sub>Fe<sub>4-x</sub>Co<sub>x</sub>Sb<sub>12</sub>, the phonon scattering was enhanced by adjusting the filling of Nd and substitution of Co, resulting in a lower thermal conductivity; Nd<sub>0.9</sub>Fe<sub>3.5</sub>Co<sub>0.5</sub>Sb<sub>12</sub> exhibited ZT = 0.91 at 723 K. For Yb<sub>y</sub>Fe<sub>4-x</sub>Co<sub>x</sub>Sb<sub>12</sub>, Yb<sub>0.9</sub>Fe<sub>3</sub>CoSb<sub>12</sub> exhibited a thermoelectric performance of ZT = 0.56 at 823 K. In addition, in this study, for the fabrication (application) of thermoelectric modules, the p-type Nd<sub>0.9</sub>Fe<sub>3.5</sub>Co<sub>0.5</sub>Sb<sub>12</sub> skutterudite, which exhibited the best thermoelectric performance, was prepared in bulky compacts to verify the uniformity and reproducibility of its thermoelectric performance.","PeriodicalId":17894,"journal":{"name":"Korean Journal of Metals and Materials","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Metals and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3365/kjmm.2024.62.7.542","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Skutterudite compounds have excellent thermoelectric performance in the intermediate-to high temperature range. Their lattice thermal conductivity can be reduced by intensifying phonon scattering through independent vibrations of the guest atoms, by filling the voids within the lattice. Furthermore, the thermoelectric figure of merit (ZT) can be enhanced by optimizing the carrier concentration through charge compensation between transition elements. In this study, we compared the thermoelectric properties of p-type filled skutterudite materials, RyFe4-xCoxSb12, where R represents rare-earth elements (La/Ce/Pr/Nd/Yb), which were filled in the voids, and Co was charge-compensated at the Fe site. In the case of LayFe4-xCoxSb12, the introduction of La filling and Co doping led La0.9Fe3CoSb12 to exhibit a high power factor and low thermal conductivity (ZT = 0.67 at 723 K). In the case of CeyFe4-xCoxSb12, in addition to Ce filling, the substitution of Co for Fe resulted in additional lattice scattering, leading to a decrease in thermal conductivity. However, CeFe4Sb12 exhibited a maximum performance of ZT = 0.70 at 823 K. In the case of PryFe4-xCoxSb12, the thermal conductivity was reduced through phonon scattering induced by Pr filling and additional lattice scattering caused by Co substitution; as a result, Pr0.8Fe3CoSb12 exhibited ZT = 0.89 at 723 K. In the case of NdyFe4-xCoxSb12, the phonon scattering was enhanced by adjusting the filling of Nd and substitution of Co, resulting in a lower thermal conductivity; Nd0.9Fe3.5Co0.5Sb12 exhibited ZT = 0.91 at 723 K. For YbyFe4-xCoxSb12, Yb0.9Fe3CoSb12 exhibited a thermoelectric performance of ZT = 0.56 at 823 K. In addition, in this study, for the fabrication (application) of thermoelectric modules, the p-type Nd0.9Fe3.5Co0.5Sb12 skutterudite, which exhibited the best thermoelectric performance, was prepared in bulky compacts to verify the uniformity and reproducibility of its thermoelectric performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Skutterudite:P 型 RyFe4-xCoxSb12 Bulky Compacts 热电性能的可重复性
沸石化合物在中高温范围内具有出色的热电性能。通过填充晶格内的空隙,利用客体原子的独立振动加强声子散射,可以降低晶格热导率。此外,还可以通过过渡元素之间的电荷补偿优化载流子浓度,从而提高热电功勋值(ZT)。在本研究中,我们比较了 p 型填充矽卡岩材料 RyFe4-xCoxSb12 的热电性能,其中 R 代表稀土元素(La/Ce/Pr/Nd/Yb),填充在空隙中,Co 在 Fe 位点进行电荷补偿。就 LayFe4-xCoxSb12 而言,由于引入了 La 填充和 Co 掺杂,La0.9Fe3CoSb12 表现出较高的功率因数和较低的热导率(723 K 时 ZT = 0.67)。就 CeyFe4-xCoxSb12 而言,除了 Ce 填充外,用 Co 代替 Fe 还导致了额外的晶格散射,从而降低了热导率。然而,CeFe4Sb12 在 823 K 时表现出 ZT = 0.70 的最大性能。在 PryFe4-xCoxSb12 的情况中,Pr 填充引起的声子散射和 Co 取代引起的额外晶格散射导致热导率降低;因此,Pr0.8Fe3CoSb12 在 723 K 时的 ZT = 0.89。在 NdyFe4-xCoxSb12 的情况下,通过调整 Nd 的填充和 Co 的替代,声子散射增强,导致热导率降低;Nd0.对于 YbyFe4-xCoxSb12,Yb0.9Fe3CoSb12 在 823 K 时的热电性能为 ZT = 0.56。9Fe3.5Co0.5Sb12沸石的热电性能最好,为了验证其热电性能的均匀性和可重复性,我们将其制备成体积较大的压块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Korean Journal of Metals and Materials
Korean Journal of Metals and Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-METALLURGY & METALLURGICAL ENGINEERING
CiteScore
1.80
自引率
58.30%
发文量
100
审稿时长
4-8 weeks
期刊介绍: The Korean Journal of Metals and Materials is a representative Korean-language journal of the Korean Institute of Metals and Materials (KIM); it publishes domestic and foreign academic papers related to metals and materials, in abroad range of fields from metals and materials to nano-materials, biomaterials, functional materials, energy materials, and new materials, and its official ISO designation is Korean J. Met. Mater.
期刊最新文献
Solidification Behavior and Mechanical Properties of Sn-2.5Ag-0.8Cu-0.05Ni-1Bi and Sn-0.75Cu-0.065Ni-1.5Bi Solder Alloys, and Microstructures in Joints Formed Using Them Microstructure and Texture Evolution in Thermomechanically Processed FCC Metals and Alloys: a Review Theoretical Maximum Thermoelectric Performance of Cu-doped and Electric Current Pulse-treated Bi-Sb-Te Alloys Investigation on the Structural and Mechanical Properties of Al Foam Manufactured by Spark Plasma Sintering and Compression Molding Methods Skutterudite: Reproducibility of Thermoelectric Performance of P-type RyFe4-xCoxSb12 Bulky Compacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1