Optimization of electric vehicle design problems using improved electric eel foraging optimization algorithm

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Materials Testing Pub Date : 2024-07-05 DOI:10.1515/mt-2024-0098
Pranav Mehta, B. Yildiz, S. M. Sait, Ali Rıza Yıldız
{"title":"Optimization of electric vehicle design problems using improved electric eel foraging optimization algorithm","authors":"Pranav Mehta, B. Yildiz, S. M. Sait, Ali Rıza Yıldız","doi":"10.1515/mt-2024-0098","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a novel approach, the Modified Electric Eel Foraging Optimization (EELFO) algorithm, which integrates artificial neural networks (ANNs) with metaheuristic algorithms for solving multidisciplinary design problems efficiently. Inspired by the foraging behavior of electric eels, the algorithm incorporates four key phases: interactions, resting, hunting, and migrating. Mathematical formulations for each phase are provided, enabling the algorithm to explore and exploit solution spaces effectively. The algorithm’s performance is evaluated on various real-world optimization problems, including weight optimization of engineering components, economic optimization of pressure handling vessels, and cost optimization of welded beams. Comparative analyses demonstrate the superiority of the MEELFO algorithm in achieving optimal solutions with minimal deviations and computational effort compared to existing metaheuristic methods.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2024-0098","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper introduces a novel approach, the Modified Electric Eel Foraging Optimization (EELFO) algorithm, which integrates artificial neural networks (ANNs) with metaheuristic algorithms for solving multidisciplinary design problems efficiently. Inspired by the foraging behavior of electric eels, the algorithm incorporates four key phases: interactions, resting, hunting, and migrating. Mathematical formulations for each phase are provided, enabling the algorithm to explore and exploit solution spaces effectively. The algorithm’s performance is evaluated on various real-world optimization problems, including weight optimization of engineering components, economic optimization of pressure handling vessels, and cost optimization of welded beams. Comparative analyses demonstrate the superiority of the MEELFO algorithm in achieving optimal solutions with minimal deviations and computational effort compared to existing metaheuristic methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用改进的电鳗觅食优化算法优化电动汽车设计问题
摘要 本文介绍了一种新方法--改良电鳗觅食优化算法(EELFO),该算法将人工神经网络(ANN)与元启发式算法相结合,可有效解决多学科设计问题。受电鳗觅食行为的启发,该算法包含四个关键阶段:互动、休息、狩猎和迁移。算法提供了每个阶段的数学公式,使算法能够有效地探索和利用解决方案空间。该算法的性能在各种实际优化问题上进行了评估,包括工程组件的重量优化、压力处理容器的经济优化和焊接梁的成本优化。对比分析表明,与现有的元启发式方法相比,MEELFO 算法能以最小的偏差和计算量获得最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
期刊最新文献
Enhancing the performance of a additive manufactured battery holder using a coupled artificial neural network with a hybrid flood algorithm and water wave algorithm Microstructural, mechanical and nondestructive characterization of X60 grade steel pipes welded by different processes Microstructural characteristics and mechanical properties of 3D printed Kevlar fibre reinforced Onyx composite Experimental investigations and material modeling of an elastomer jaw coupling Numerical analysis of cathodic protection of a Q355ND frame in a shallow water subsea Christmas tree
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1