{"title":"Multi-step Natural Gas Price Forecasting using Ensemble Empirical Mode Decomposition and Long Short-Term Memory Hybrid Model","authors":"Herry Kartika Gandhi, Ispány Márton","doi":"10.32479/ijeep.16053","DOIUrl":null,"url":null,"abstract":"With the characteristic of natural gas as a clean, non-toxic, and valuable energy source, its use has been increasing in recent years. Thus, maintaining stable natural gas security requires a reliable long-step price forecasting indicator with less error. We propose a hybrid theory of Ensemble Empirical Mode Decomposition (EEMD) with Long Short-Term Memory (LSTM) to perform multi-step forecasting focusing on 30 to 90 steps of the daily Henry Hub natural gas price as a dataset. Using four widespread error measurements, the proposed model provides excellent results compared to no-decomposition as the benchmark model. The proposed model provides 50% lower error results than the single LSTM. EEMD_LSTM brings values below 10 in the MAPE indicator, even up to 90-step prediction. The Diebold-Mariano test also confirms that EEMD_LSTM outperforms the single LSTM on every step with the majority of 90% confidence level. We also simulated the model by analysing the box and whiskers plot of RMSE, which shows that the variance of predicted values ranges between 1.11%. These results show that the proposed forecasting model provides robust results for the case of medium-term natural gas prices with excellent forecasting results.","PeriodicalId":38194,"journal":{"name":"International Journal of Energy Economics and Policy","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Economics and Policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32479/ijeep.16053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
With the characteristic of natural gas as a clean, non-toxic, and valuable energy source, its use has been increasing in recent years. Thus, maintaining stable natural gas security requires a reliable long-step price forecasting indicator with less error. We propose a hybrid theory of Ensemble Empirical Mode Decomposition (EEMD) with Long Short-Term Memory (LSTM) to perform multi-step forecasting focusing on 30 to 90 steps of the daily Henry Hub natural gas price as a dataset. Using four widespread error measurements, the proposed model provides excellent results compared to no-decomposition as the benchmark model. The proposed model provides 50% lower error results than the single LSTM. EEMD_LSTM brings values below 10 in the MAPE indicator, even up to 90-step prediction. The Diebold-Mariano test also confirms that EEMD_LSTM outperforms the single LSTM on every step with the majority of 90% confidence level. We also simulated the model by analysing the box and whiskers plot of RMSE, which shows that the variance of predicted values ranges between 1.11%. These results show that the proposed forecasting model provides robust results for the case of medium-term natural gas prices with excellent forecasting results.
期刊介绍:
International Journal of Energy Economics and Policy (IJEEP) is the international academic journal, and is a double-blind, peer-reviewed academic journal publishing high quality conceptual and measure development articles in the areas of energy economics, energy policy and related disciplines. The journal has a worldwide audience. The journal''s goal is to stimulate the development of energy economics, energy policy and related disciplines theory worldwide by publishing interesting articles in a highly readable format. The journal is published bimonthly (6 issues per year) and covers a wide variety of topics including (but not limited to): Energy Consumption, Electricity Consumption, Economic Growth - Energy, Energy Policy, Energy Planning, Energy Forecasting, Energy Pricing, Energy Politics, Energy Financing, Energy Efficiency, Energy Modelling, Energy Use, Energy - Environment, Energy Systems, Renewable Energy, Energy Sources, Environmental Economics, Oil & Gas .