{"title":"TECHNOLOGICAL INNOVATION COOPERATIVE BEHAVIOR ANALYSIS FOR MEGA CONSTRUCTION PROJECTS BASED ON TPB","authors":"Zhenxu Guo, Qing’e Wang","doi":"10.3846/jcem.2024.21267","DOIUrl":null,"url":null,"abstract":"Due to the complex nature of mega construction projects (MCPs), technological innovation risks have significantly increased. Cooperation is widely accepted as a proactive approach to resolving these risks. An in-depth study of technological innovation cooperative behavior (TICB) helps understand the underlying reasons, but studies need to pay more attention to it. This study explored the factors affecting TICB for MCPs and developed a conceptual model based on the Theory of planned behavior (TPB). It established a structural equation model to verify the relationship between influencing factors. An example verified the feasibility of the model. The results show that cooperative attitude, subjective cooperative norm, perceived cooperative behavior control, and cooperative scenarios positively affect cooperative behavior through cooperative intention. Cooperative attitude plays a mediating role between cooperative scenarios and cooperative intention. Perceived cooperative behavior control has no direct effect on cooperative behavior. This study provides a theoretical reference to guide future empirical studies and enriches the knowledge of TICB for MCPs.","PeriodicalId":15524,"journal":{"name":"Journal of Civil Engineering and Management","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Engineering and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2024.21267","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the complex nature of mega construction projects (MCPs), technological innovation risks have significantly increased. Cooperation is widely accepted as a proactive approach to resolving these risks. An in-depth study of technological innovation cooperative behavior (TICB) helps understand the underlying reasons, but studies need to pay more attention to it. This study explored the factors affecting TICB for MCPs and developed a conceptual model based on the Theory of planned behavior (TPB). It established a structural equation model to verify the relationship between influencing factors. An example verified the feasibility of the model. The results show that cooperative attitude, subjective cooperative norm, perceived cooperative behavior control, and cooperative scenarios positively affect cooperative behavior through cooperative intention. Cooperative attitude plays a mediating role between cooperative scenarios and cooperative intention. Perceived cooperative behavior control has no direct effect on cooperative behavior. This study provides a theoretical reference to guide future empirical studies and enriches the knowledge of TICB for MCPs.
期刊介绍:
The Journal of Civil Engineering and Management is a peer-reviewed journal that provides an international forum for the dissemination of the latest original research, achievements and developments. We publish for researchers, designers, users and manufacturers in the different fields of civil engineering and management.
The journal publishes original articles that present new information and reviews. Our objective is to provide essential information and new ideas to help improve civil engineering competency, efficiency and productivity in world markets.
The Journal of Civil Engineering and Management publishes articles in the following fields:
building materials and structures,
structural mechanics and physics,
geotechnical engineering,
road and bridge engineering,
urban engineering and economy,
constructions technology, economy and management,
information technologies in construction,
fire protection, thermoinsulation and renovation of buildings,
labour safety in construction.