The ROI of AI in lexicography

Lexicography Pub Date : 2024-07-04 DOI:10.1558/lexi.27569
Erin McKean, Will Fitzgerald
{"title":"The ROI of AI in lexicography","authors":"Erin McKean, Will Fitzgerald","doi":"10.1558/lexi.27569","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) are being used for many language-based tasks, including translation, summarization and paraphrasing, sentiment analysis, and for content-generation tasks, such as code generation, answering search queries in natural language, and to power chatbots in customer service and other domains. Since much modern lexicography is based on investigation and analysis of large-scale corpora analogous to the (much larger) corpora used to train LLMs, we hypothesize that LLMs could be used for typical lexicographic tasks. A commercially-available LLM API (OpenAI’s ChatGPT gpt-3.5-turbo) was used to complete typical lexicographic tasks, such as headword expansion, phrase and form finding, and creation of definitions and examples. The results showed that the output of this LLM is not up to the standard of human editorial work, requiring significant oversight because of errors and “hallucinations” (the tendency of LLMs to invent facts). In addition, the externalities of LLM use, including concerns about environmental impact and replication of bias, add to the overall cost.","PeriodicalId":515202,"journal":{"name":"Lexicography","volume":" 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lexicography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1558/lexi.27569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large Language Models (LLMs) are being used for many language-based tasks, including translation, summarization and paraphrasing, sentiment analysis, and for content-generation tasks, such as code generation, answering search queries in natural language, and to power chatbots in customer service and other domains. Since much modern lexicography is based on investigation and analysis of large-scale corpora analogous to the (much larger) corpora used to train LLMs, we hypothesize that LLMs could be used for typical lexicographic tasks. A commercially-available LLM API (OpenAI’s ChatGPT gpt-3.5-turbo) was used to complete typical lexicographic tasks, such as headword expansion, phrase and form finding, and creation of definitions and examples. The results showed that the output of this LLM is not up to the standard of human editorial work, requiring significant oversight because of errors and “hallucinations” (the tendency of LLMs to invent facts). In addition, the externalities of LLM use, including concerns about environmental impact and replication of bias, add to the overall cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在词典学中的投资回报率
大型语言模型(LLM)正被用于许多基于语言的任务,包括翻译、摘要和转述、情感分析,以及内容生成任务,如代码生成、用自然语言回答搜索查询,以及为客户服务和其他领域的聊天机器人提供动力。由于现代词典学大多基于大规模语料库的调查和分析,类似于用于训练 LLM 的(更大的)语料库,因此我们假设 LLM 可用于典型的词典学任务。我们使用市面上的 LLM API(OpenAI 的 ChatGPT gpt-3.5-turbo)来完成典型的词典学任务,如词头扩展、短语和形式查找,以及创建定义和示例。结果表明,这种 LLM 的输出达不到人类编辑工作的标准,由于错误和 "幻觉"(LLM 编造事实的倾向),需要大量监督。此外,使用法律硕士的外部因素,包括对环境影响和复制偏见的担忧,也增加了总体成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
期刊最新文献
Lexicography, artificial intelligence, and dictionary users Compilation and uses of the 'Yonsei Korean Synonyms Dictionary for Learners' The ROI of AI in lexicography Developing illustrative “Can Do” descriptors for dictionary use by foreign language learners Making known the what and the why
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1