{"title":"Multifunctional MXene Nanosheets and Their Applications in Antibacterial Therapy","authors":"Xuyang Lai, Yuting Tang, Yuanhao Dong, Yankun Luo, Xiaodong Yang, Qiang Peng","doi":"10.1002/anbr.202400033","DOIUrl":null,"url":null,"abstract":"<p>\nBacterial infections are a great threat to human health, and the irrational use of antibiotics has largely compromised the efficacy of antibiotic therapy due to the emergence of drug-resistant pathogens. It is known that synthesizing new antibiotics is difficult and time-consuming. In this case, developing antibiotics-independent antibacterial approaches is of great importance and significance. In the past decade, various functional nanomaterials have shown great potentials in the treatment of bacterial infections. Among these nanomaterials, transition metal carbides or nitrides, namely MXene, have attracted much attention. As the novel 2D nanosheets, MXene can serve either as a direct antibacterial agent due to its intrinsic antibacterial activity and photothermal effect, or as an efficient carrier to load photosensitizers and photocatalysts for photodynamic and photocatalytic therapy. In recent few years, the number of literatures regarding MXene-based antibacterial therapy has increased rapidly. Thus, it is the time to systematically summarize the applications of MXene in the treatment of bacteria, especially those with drug resistance. Herein, it is aimed to summarize the preparation methods for MXene and provide a comprehensive understanding of its properties and applications in antibacterial therapy. Also, its use for bacterial detection and the challenges for practical use are discussed.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial infections are a great threat to human health, and the irrational use of antibiotics has largely compromised the efficacy of antibiotic therapy due to the emergence of drug-resistant pathogens. It is known that synthesizing new antibiotics is difficult and time-consuming. In this case, developing antibiotics-independent antibacterial approaches is of great importance and significance. In the past decade, various functional nanomaterials have shown great potentials in the treatment of bacterial infections. Among these nanomaterials, transition metal carbides or nitrides, namely MXene, have attracted much attention. As the novel 2D nanosheets, MXene can serve either as a direct antibacterial agent due to its intrinsic antibacterial activity and photothermal effect, or as an efficient carrier to load photosensitizers and photocatalysts for photodynamic and photocatalytic therapy. In recent few years, the number of literatures regarding MXene-based antibacterial therapy has increased rapidly. Thus, it is the time to systematically summarize the applications of MXene in the treatment of bacteria, especially those with drug resistance. Herein, it is aimed to summarize the preparation methods for MXene and provide a comprehensive understanding of its properties and applications in antibacterial therapy. Also, its use for bacterial detection and the challenges for practical use are discussed.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.