M. R. Rahim, MD Mofazzal Hossain, Mohd Firdaus Hassan
{"title":"Development and Comprehensive Investigation of a Lightweight FBG Accelerometer for Small Structure Acceleration Measurements","authors":"M. R. Rahim, MD Mofazzal Hossain, Mohd Firdaus Hassan","doi":"10.1088/1361-6501/ad5dea","DOIUrl":null,"url":null,"abstract":"\n Despite their sensitivity potential, diaphragm-type fiber Bragg grating accelerometers with inertia mass are often too complex and large, limiting their suitability for measuring small structures. Designing a suitable accelerometer for small structures, where its weight must be less than one-tenth of the measured structure, is challenging. This paper introduces a compact, simplified, and fabricable non-inertia mass FBG accelerometer (FBGA-SD), featuring a longer FBG tunnel and a through-hole for monitoring. The proposed FBGA-SD is 16 × 16 × 10 mm, weighing 4 grams. Numerical and experimental results show good agreement, though amplitude sensitivity differs by 50%. The experimental sensitivity is 9.64 × 10-2 pm/g, while transient response analysis gives 4.79 × 10-2 pm/g, valid for 10-100 Hz excitation frequencies and up to 10.5 m/s² base acceleration.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad5dea","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their sensitivity potential, diaphragm-type fiber Bragg grating accelerometers with inertia mass are often too complex and large, limiting their suitability for measuring small structures. Designing a suitable accelerometer for small structures, where its weight must be less than one-tenth of the measured structure, is challenging. This paper introduces a compact, simplified, and fabricable non-inertia mass FBG accelerometer (FBGA-SD), featuring a longer FBG tunnel and a through-hole for monitoring. The proposed FBGA-SD is 16 × 16 × 10 mm, weighing 4 grams. Numerical and experimental results show good agreement, though amplitude sensitivity differs by 50%. The experimental sensitivity is 9.64 × 10-2 pm/g, while transient response analysis gives 4.79 × 10-2 pm/g, valid for 10-100 Hz excitation frequencies and up to 10.5 m/s² base acceleration.
期刊介绍:
Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented.
Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.