Andrea Tinterri, Federica Pelizzari, Marilena di Padova, Francesco Palladino, Giordano Vignoli, Anna Dipace
{"title":"Automating board-game based learning. A comprehensive study to assess reliability and accuracy of AI in game evaluation","authors":"Andrea Tinterri, Federica Pelizzari, Marilena di Padova, Francesco Palladino, Giordano Vignoli, Anna Dipace","doi":"10.3233/ia-240030","DOIUrl":null,"url":null,"abstract":"Game-Based Learning (GBL) and its subset, Board Game-Based Learning (bGBL), are dynamic pedagogical approaches leveraging the immersive power of games to enrich the learning experience. bGBL is distinguished by its tactile and social dimensions, fostering interactive exploration, collaboration, and strategic thinking; however, its adoption is limited due to lack of preparation by teachers and educators and of pedagogical and instructional frameworks in scientific literature. Artificial intelligence (AI) tools have the potential to automate or assist instructional design, but carry significant open questions, including bias, lack of context sensitivity, privacy issues, and limited evidence. This study investigates ChatGPT as a tool for selecting board games for educational purposes, testing its reliability, accuracy, and context-sensitivity through comparison with human experts evaluation. Results show high internal consistency, whereas correlation analyses reveal moderate to high agreement with expert ratings. Contextual factors are shown to influence rankings, emphasizing the need to better understand both bGBL expert decision-making processes and AI limitations. This research provides a novel approach to bGBL, provides empirical evidence of the benefits of integrating AI into instructional design, and highlights current challenges and limitations in both AI and bGBL theory, paving the way for more effective and personalized educational experiences.","PeriodicalId":504988,"journal":{"name":"Intelligenza Artificiale","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligenza Artificiale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ia-240030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Game-Based Learning (GBL) and its subset, Board Game-Based Learning (bGBL), are dynamic pedagogical approaches leveraging the immersive power of games to enrich the learning experience. bGBL is distinguished by its tactile and social dimensions, fostering interactive exploration, collaboration, and strategic thinking; however, its adoption is limited due to lack of preparation by teachers and educators and of pedagogical and instructional frameworks in scientific literature. Artificial intelligence (AI) tools have the potential to automate or assist instructional design, but carry significant open questions, including bias, lack of context sensitivity, privacy issues, and limited evidence. This study investigates ChatGPT as a tool for selecting board games for educational purposes, testing its reliability, accuracy, and context-sensitivity through comparison with human experts evaluation. Results show high internal consistency, whereas correlation analyses reveal moderate to high agreement with expert ratings. Contextual factors are shown to influence rankings, emphasizing the need to better understand both bGBL expert decision-making processes and AI limitations. This research provides a novel approach to bGBL, provides empirical evidence of the benefits of integrating AI into instructional design, and highlights current challenges and limitations in both AI and bGBL theory, paving the way for more effective and personalized educational experiences.