Ultra-large strain response in BNT-BT-KNN thin films boosted by electric field-induced inversion of long-range ordered polarization

IF 8.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materiomics Pub Date : 2024-07-05 DOI:10.1016/j.jmat.2024.06.005
Jinyan Zhao , Zhe Wang , Liyan Dai , Chuying Chen , Kun Zheng , Ruihua An , Zenghui Liu , Nan Zhang , Yi Quan , Lingyan Wang , Genshui Wang , Xin Li , Yulong Zhao , Gang Niu , Wei Ren
{"title":"Ultra-large strain response in BNT-BT-KNN thin films boosted by electric field-induced inversion of long-range ordered polarization","authors":"Jinyan Zhao ,&nbsp;Zhe Wang ,&nbsp;Liyan Dai ,&nbsp;Chuying Chen ,&nbsp;Kun Zheng ,&nbsp;Ruihua An ,&nbsp;Zenghui Liu ,&nbsp;Nan Zhang ,&nbsp;Yi Quan ,&nbsp;Lingyan Wang ,&nbsp;Genshui Wang ,&nbsp;Xin Li ,&nbsp;Yulong Zhao ,&nbsp;Gang Niu ,&nbsp;Wei Ren","doi":"10.1016/j.jmat.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><div>Bismuth sodium titanate (BNT)-based piezoelectric materials are the most promising candidates for lead-free actuator applications. With the request for integration and size miniaturization of devices, it is urgent to develop thin films for microdevices to be compatible with semiconductor processes. Through composition engineering, BNT-based thin films were fabricated on silicon substrates, with ultra-high strain response and negligible hysteresis in strain curves. The DC-dependent and temperature-dependent dielectric properties were collected to investigate the relaxor state of thin films. The structure and polarization transition and evolution as a function of electric field and time were analyzed based on the electric characterization, <em>in-situ</em> Raman measurements, and dynamics PFM. The reversible phase transition and polarization order-disorder transformation are the most significant features for reaching a large strain of &gt;1.6% in BNT-based thin films.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 3","pages":"Article 100908"},"PeriodicalIF":8.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824001473","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bismuth sodium titanate (BNT)-based piezoelectric materials are the most promising candidates for lead-free actuator applications. With the request for integration and size miniaturization of devices, it is urgent to develop thin films for microdevices to be compatible with semiconductor processes. Through composition engineering, BNT-based thin films were fabricated on silicon substrates, with ultra-high strain response and negligible hysteresis in strain curves. The DC-dependent and temperature-dependent dielectric properties were collected to investigate the relaxor state of thin films. The structure and polarization transition and evolution as a function of electric field and time were analyzed based on the electric characterization, in-situ Raman measurements, and dynamics PFM. The reversible phase transition and polarization order-disorder transformation are the most significant features for reaching a large strain of >1.6% in BNT-based thin films.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电场诱导的长程有序极化反转促进 BNT-BT-KNN 薄膜的超大应变响应
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materiomics
Journal of Materiomics Materials Science-Metals and Alloys
CiteScore
14.30
自引率
6.40%
发文量
331
审稿时长
37 days
期刊介绍: The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.
期刊最新文献
Electronic state reconstruction enabling high thermoelectric performance in Ti doped Sb2Te3 flexible thin films Solar Fuel Photocatalysis Editor corrections to “Influence of electrode contact arrangements on Polarisation-Electric field measurements of ferroelectric ceramics: A case study of BaTiO3” [Journal of Materiomics 11 (2025) 100939] Texture modulation of ferroelectric Hf0.5Zr0.5O2 thin films by engineering the polymorphism and texture of tungsten electrodes Graphical Contents list
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1