Mathematical modeling of creeping electromagnetohydrodynamic peristaltic propulsion in an annular gap between sinusoidally deforming permeable and impermeable curved tubes
{"title":"Mathematical modeling of creeping electromagnetohydrodynamic peristaltic propulsion in an annular gap between sinusoidally deforming permeable and impermeable curved tubes","authors":"P. Yadav, Muhammad Roshan","doi":"10.1063/5.0217370","DOIUrl":null,"url":null,"abstract":"The present work investigates the creeping peristaltic propulsion of viscid fluid in an annular gap between sinusoidally deforming permeable and impermeable curved tubes of similar shape under the influence of an externally imposed electric and magnetic field. In this model, the outer tube with a permeable wall surface is supposed to satisfy the Saffman slip condition. The flow equations are simplified by the estimation of a large wavelength in comparison with the radius of the external tube. An analytical solution for the axial velocity is obtained in the computational software MATHEMATICA. Graphical analyses are conducted to explore the variations in wall shear stress, velocity, pressure rise, frictional force, and stream function with respect to different emergent parameters, providing insight into the underlying physics of the flow phenomena. An investigation of the effects of the Hartmann number and electric field strength on the flow through a gap between deformable tubes with curved structures has important implications for a variety of engineering applications, including mechanical and biomedical engineering. The streamlines are plotted to discuss fluid trapping and visualize the flow pattern of the viscid fluid inside the curved annular domain. A comparative analysis of fluid transport induced by sinusoidal, triangular, trapezoidal, and square wave shapes is encountered with the help of streamlined contour diagrams. The comparison of pressure gradients in three different models is also discussed to gain insight due to fluid–structure interaction. A gap in the body of recently published literature is filled by the results discussed in this paper.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":"42 46","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0217370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present work investigates the creeping peristaltic propulsion of viscid fluid in an annular gap between sinusoidally deforming permeable and impermeable curved tubes of similar shape under the influence of an externally imposed electric and magnetic field. In this model, the outer tube with a permeable wall surface is supposed to satisfy the Saffman slip condition. The flow equations are simplified by the estimation of a large wavelength in comparison with the radius of the external tube. An analytical solution for the axial velocity is obtained in the computational software MATHEMATICA. Graphical analyses are conducted to explore the variations in wall shear stress, velocity, pressure rise, frictional force, and stream function with respect to different emergent parameters, providing insight into the underlying physics of the flow phenomena. An investigation of the effects of the Hartmann number and electric field strength on the flow through a gap between deformable tubes with curved structures has important implications for a variety of engineering applications, including mechanical and biomedical engineering. The streamlines are plotted to discuss fluid trapping and visualize the flow pattern of the viscid fluid inside the curved annular domain. A comparative analysis of fluid transport induced by sinusoidal, triangular, trapezoidal, and square wave shapes is encountered with the help of streamlined contour diagrams. The comparison of pressure gradients in three different models is also discussed to gain insight due to fluid–structure interaction. A gap in the body of recently published literature is filled by the results discussed in this paper.