Toward machine-learning-assisted PW-class high-repetition-rate experiments with solid targets

D. Mariscal, B. Djordjević, R. Anirudh, J. Jayaraman-Thiagarajan, E. Grace, R. Simpson, K. Swanson, T. C. Galvin, D. Mittelberger, J. Heebner, R. Muir, E. Folsom, M. P. Hill, S. Feister, E. Ito, K. Valdez-Sereno, J. J. Rocca, J. Park, S. Wang, R. Hollinger, R. Nedbailo, B. Sullivan, G. Zeraouli, A. Shukla, P. Turaga, A. Sarkar, B. Van Essen, S. Liu, B. Spears, P.-T. Bremer, T. Ma
{"title":"Toward machine-learning-assisted PW-class high-repetition-rate experiments with solid targets","authors":"D. Mariscal, B. Djordjević, R. Anirudh, J. Jayaraman-Thiagarajan, E. Grace, R. Simpson, K. Swanson, T. C. Galvin, D. Mittelberger, J. Heebner, R. Muir, E. Folsom, M. P. Hill, S. Feister, E. Ito, K. Valdez-Sereno, J. J. Rocca, J. Park, S. Wang, R. Hollinger, R. Nedbailo, B. Sullivan, G. Zeraouli, A. Shukla, P. Turaga, A. Sarkar, B. Van Essen, S. Liu, B. Spears, P.-T. Bremer, T. Ma","doi":"10.1063/5.0190553","DOIUrl":null,"url":null,"abstract":"We present progress in utilizing a machine learning (ML) assisted optimization framework to study the trends in a parameter space defined by spectrally shaped, high-intensity, petawatt-class (8 J, 45 fs) laser pulses interacting with solid targets and give the first simulation-based overview of predicted trends. A neural network (NN) incorporating uncertainty quantification is trained to predict the number of hot electrons generated by the laser–target interaction as a function of pulse shaping parameters. The predictions of this NN serve as the basis function for a Bayesian optimization framework to navigate this space. For post-experimental evaluation, we compare two separate neural network (NN) models. One is based solely on data from experiments, and the other is trained only on ensemble particle-in-cell simulations. Reviewing the predicted and observed trends across the experiment-capable laser parameter search space, we find that both ML models predict a maximal increase in hot electron generation at a level of approximately 12%–18%; however, no statistically significant enhancement was observed in experiments. On direct comparison of the NN models, the average discrepancy is 8.5%, with a maximum of 30%. Since shot-to-shot fluctuations in experiments affect the observations, we evaluate the behavior of our optimization framework by performing virtual experiments that vary the number of repeated observations and the noise levels. Here, we discuss the implications of such a framework for future autonomous exploration platforms in high-repetition-rate experiments.","PeriodicalId":510396,"journal":{"name":"Physics of Plasmas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0190553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present progress in utilizing a machine learning (ML) assisted optimization framework to study the trends in a parameter space defined by spectrally shaped, high-intensity, petawatt-class (8 J, 45 fs) laser pulses interacting with solid targets and give the first simulation-based overview of predicted trends. A neural network (NN) incorporating uncertainty quantification is trained to predict the number of hot electrons generated by the laser–target interaction as a function of pulse shaping parameters. The predictions of this NN serve as the basis function for a Bayesian optimization framework to navigate this space. For post-experimental evaluation, we compare two separate neural network (NN) models. One is based solely on data from experiments, and the other is trained only on ensemble particle-in-cell simulations. Reviewing the predicted and observed trends across the experiment-capable laser parameter search space, we find that both ML models predict a maximal increase in hot electron generation at a level of approximately 12%–18%; however, no statistically significant enhancement was observed in experiments. On direct comparison of the NN models, the average discrepancy is 8.5%, with a maximum of 30%. Since shot-to-shot fluctuations in experiments affect the observations, we evaluate the behavior of our optimization framework by performing virtual experiments that vary the number of repeated observations and the noise levels. Here, we discuss the implications of such a framework for future autonomous exploration platforms in high-repetition-rate experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现机器学习辅助的 PW 级固体目标高重复率实验
我们介绍了利用机器学习(ML)辅助优化框架研究参数空间趋势的进展,该参数空间由光谱成形、高强度、小功率级(8 J,45 fs)激光脉冲与固体靶相互作用所定义,并首次对预测趋势进行了基于模拟的概述。我们训练了一个包含不确定性量化的神经网络(NN),以预测激光与目标相互作用产生的热电子数量与脉冲整形参数的函数关系。该神经网络的预测结果可作为贝叶斯优化框架的基础函数,用于导航该空间。为了进行实验后评估,我们比较了两个独立的神经网络(NN)模型。其中一个完全基于实验数据,而另一个则仅在粒子入胞模拟中进行训练。回顾整个实验激光参数搜索空间的预测和观察趋势,我们发现两个 ML 模型都预测热电子生成的最大增幅约为 12%-18%;但在实验中并未观察到统计意义上的显著增强。直接比较 NN 模型,平均差异为 8.5%,最大差异为 30%。由于实验中镜头间的波动会影响观测结果,我们通过执行虚拟实验来评估优化框架的行为,这些虚拟实验改变了重复观测的数量和噪声水平。在此,我们讨论了这种框架对未来高重复率实验中自主探索平台的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward machine-learning-assisted PW-class high-repetition-rate experiments with solid targets Numerical analysis of three-dimensional magnetopause-like reconnection properties by Hall MHD simulation for SPERF-AREX From L-mode to the L–H transition, experiments on ASDEX upgrade and related gyrokinetic simulations Generation of gamma photons and pairs with transverse orbital angular momentum via spatiotemporal optical vortex pulse A Gaussian process based surrogate approach for the optimization of cylindrical targets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1