Linear modeling techniques for liquid height regulation in two tank - Two variable system

Q4 Engineering Measurement Sensors Pub Date : 2024-07-14 DOI:10.1016/j.measen.2024.101275
A. Sreekanth Reddy , G. Nageswara Reddy
{"title":"Linear modeling techniques for liquid height regulation in two tank - Two variable system","authors":"A. Sreekanth Reddy ,&nbsp;G. Nageswara Reddy","doi":"10.1016/j.measen.2024.101275","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, two linear modeling techniques are presented for regulating the liquid height in two tank - two variable system (TT-TVS). Initially, the nonlinear dynamics of TT-TVS are linearized using the Taylor series linearization technique. However, this method reveals that some parameters of TT-TVS are inexact, necessitating the adoption of system identification techniques or mathematical approaches to accurately identify the linear dynamics. To address this, two new approaches are proposed: (i) a mathematical approach utilizing real-time input-output data, and (ii) a Linear Variable Parameter Transfer Function (LVPTF) model identification approach, which employs real-time data and MATLAB curve fitting tool. A comparative analysis between the proposed identification techniques and existing methods from the literature is also presented. The results indicate that the LVPTF modeling technique offers superior accuracy in identifying the linear dynamics of TT-TVS.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"35 ","pages":"Article 101275"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002514/pdfft?md5=b75b2a9666e48b6eff2fdde73abacdda&pid=1-s2.0-S2665917424002514-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, two linear modeling techniques are presented for regulating the liquid height in two tank - two variable system (TT-TVS). Initially, the nonlinear dynamics of TT-TVS are linearized using the Taylor series linearization technique. However, this method reveals that some parameters of TT-TVS are inexact, necessitating the adoption of system identification techniques or mathematical approaches to accurately identify the linear dynamics. To address this, two new approaches are proposed: (i) a mathematical approach utilizing real-time input-output data, and (ii) a Linear Variable Parameter Transfer Function (LVPTF) model identification approach, which employs real-time data and MATLAB curve fitting tool. A comparative analysis between the proposed identification techniques and existing methods from the literature is also presented. The results indicate that the LVPTF modeling technique offers superior accuracy in identifying the linear dynamics of TT-TVS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
双罐双变量系统中液体高度调节的线性建模技术
本文介绍了两种线性建模技术,用于调节双罐双变量系统(TT-TVS)中的液体高度。起初,TT-TVS 的非线性动力学采用泰勒级数线性化技术进行线性化。然而,这种方法发现 TT-TVS 的某些参数并不精确,因此有必要采用系统识别技术或数学方法来准确识别线性动力学。为此,我们提出了两种新方法:(i) 利用实时输入输出数据的数学方法;(ii) 利用实时数据和 MATLAB 曲线拟合工具的线性可变参数传递函数(LVPTF)模型识别方法。此外,还对所提出的识别技术和现有的文献方法进行了比较分析。结果表明,LVPTF 建模技术在识别 TT-TVS 线性动力学方面具有更高的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Vehicle maneuver recognition and correction algorithm for road quality measurement system optimization A simple and inexpensive design of radioactive source for accurate level and height gauging in petrochemical industries Pneumonia detection from X-ray images using federated learning–An unsupervised learning approach Number plate recognition smart parking management system using IoT Collaboration of clustering and classification techniques for better prediction of severity of heart stroke using deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1