Federated brain tumor segmentation: An extensive benchmark

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Medical image analysis Pub Date : 2024-07-14 DOI:10.1016/j.media.2024.103270
Matthis Manthe , Stefan Duffner , Carole Lartizien
{"title":"Federated brain tumor segmentation: An extensive benchmark","authors":"Matthis Manthe ,&nbsp;Stefan Duffner ,&nbsp;Carole Lartizien","doi":"10.1016/j.media.2024.103270","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, federated learning has raised increasing interest in the medical image analysis field due to its ability to aggregate multi-center data with privacy-preserving properties. A large amount of federated training schemes have been published, which we categorize into global (one final model), personalized (one model per institution) or hybrid (one model per cluster of institutions) methods. However, their applicability on the recently published Federated Brain Tumor Segmentation 2022 dataset has not been explored yet. We propose an extensive benchmark of federated learning algorithms from all three classes on this task. While standard FedAvg already performs very well, we show that some methods from each category can bring a slight performance improvement and potentially limit the final model(s) bias toward the predominant data distribution of the federation. Moreover, we provide a deeper understanding of the behavior of federated learning on this task through alternative ways of distributing the pooled dataset among institutions, namely an Independent and Identical Distributed (IID) setup, and a limited data setup. Our code is available at (<span><span>https://github.com/MatthisManthe/Benchmark_FeTS2022</span><svg><path></path></svg></span>).</p></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524001956","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, federated learning has raised increasing interest in the medical image analysis field due to its ability to aggregate multi-center data with privacy-preserving properties. A large amount of federated training schemes have been published, which we categorize into global (one final model), personalized (one model per institution) or hybrid (one model per cluster of institutions) methods. However, their applicability on the recently published Federated Brain Tumor Segmentation 2022 dataset has not been explored yet. We propose an extensive benchmark of federated learning algorithms from all three classes on this task. While standard FedAvg already performs very well, we show that some methods from each category can bring a slight performance improvement and potentially limit the final model(s) bias toward the predominant data distribution of the federation. Moreover, we provide a deeper understanding of the behavior of federated learning on this task through alternative ways of distributing the pooled dataset among institutions, namely an Independent and Identical Distributed (IID) setup, and a limited data setup. Our code is available at (https://github.com/MatthisManthe/Benchmark_FeTS2022).

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合脑肿瘤分割:广泛的基准测试
最近,联合学习在医学影像分析领域引起了越来越多的关注,因为它能够聚合多中心数据,并具有保护隐私的特性。我们将其分为全局(一个最终模型)、个性化(每个机构一个模型)或混合(每个机构集群一个模型)方法。然而,这些方法在最近发布的 "联合脑肿瘤分割 2022 "数据集上的适用性尚未得到探讨。我们建议在这项任务中对所有三类联合学习算法进行广泛的基准测试。虽然标准的 FedAvg 已经表现出色,但我们表明,每个类别中的一些方法都能带来轻微的性能提升,并有可能限制最终模型偏向联盟的主要数据分布。此外,我们还通过在机构间分配集合数据集的其他方式,即独立且相同的分布式(IID)设置和有限数据设置,加深了对联合学习在这项任务中的行为的理解。我们的代码见 (https://github.com/MatthisManthe/Benchmark_FeTS2022)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
期刊最新文献
Beyond strong labels: Weakly-supervised learning based on Gaussian pseudo labels for the segmentation of ellipse-like vascular structures in non-contrast CTs A cross-attention-based deep learning approach for predicting functional stroke outcomes using 4D CTP imaging and clinical metadata DACG: Dual Attention and Context Guidance model for radiology report generation Simulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signature An objective comparison of methods for augmented reality in laparoscopic liver resection by preoperative-to-intraoperative image fusion from the MICCAI2022 challenge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1