Insighting the effect of ultrasound-assisted polyphenol non-covalent binding on the functional properties of myofibrillar proteins from golden threadfin (Nemipterus virgatus)
{"title":"Insighting the effect of ultrasound-assisted polyphenol non-covalent binding on the functional properties of myofibrillar proteins from golden threadfin (Nemipterus virgatus)","authors":"","doi":"10.1016/j.ultsonch.2024.106988","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the effect of ultrasound-assisted non-covalent binding of different polyphenols (tannins, quercetin, and resveratrol) on the structure and functional properties of myofibrillar proteins (MP) from the golden threadfin (<em>Nemipterus virgatus</em>) was investigated. The effect of ultrasound-assisted polyphenol incorporation on the structure and properties of MP was evaluated by multispectral analysis, interfacial properties, emulsification properties and antioxidant properties et al. The results revealed that the protein–polyphenol interaction led to a conformational change in the microenvironment around the hydrophobic amino acid residues, resulting in an increase in the equilibrium of the MP molecules in terms of affinity and hydrophobicity. Ultrasound assisted polyphenols addition also led to a significant decrease of the oil/water interfacial tension (from 21.22 mN/m of MP to 8.66 mN/m of UMP-TA sample) and a significant increase of the EAI (from 21.57 m<sup>2</sup>/g of MP to 28.79 m<sup>2</sup>/g of UMP-TA sample) and ES (from 84.76 min of MP to 124.25 min of UMP-TA). In addition, ultrasound-assisted polyphenol incorporation could enhance the antioxidant properties of MP, with the DPPH and ABTS radical scavenging rate of UMP-TA increase of 47.7 % and 55.2 % in comparison with MP, respectively. The results demonstrated that the noncovalent combination with polyphenols under ultrasound-assisted conditions endowed MP with better functional properties, including solubility, emulsification, foaming, and antioxidant properties through structure change. This study can provide innovative theoretical guidance for effectively preparing aquatic protein–polyphenol non-covalent complexes with multiple functions and improving the processing and utilization value of aquatic proteins.</p></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350417724002360/pdfft?md5=438eddc06cc661f7031371d937ca431d&pid=1-s2.0-S1350417724002360-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724002360","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the effect of ultrasound-assisted non-covalent binding of different polyphenols (tannins, quercetin, and resveratrol) on the structure and functional properties of myofibrillar proteins (MP) from the golden threadfin (Nemipterus virgatus) was investigated. The effect of ultrasound-assisted polyphenol incorporation on the structure and properties of MP was evaluated by multispectral analysis, interfacial properties, emulsification properties and antioxidant properties et al. The results revealed that the protein–polyphenol interaction led to a conformational change in the microenvironment around the hydrophobic amino acid residues, resulting in an increase in the equilibrium of the MP molecules in terms of affinity and hydrophobicity. Ultrasound assisted polyphenols addition also led to a significant decrease of the oil/water interfacial tension (from 21.22 mN/m of MP to 8.66 mN/m of UMP-TA sample) and a significant increase of the EAI (from 21.57 m2/g of MP to 28.79 m2/g of UMP-TA sample) and ES (from 84.76 min of MP to 124.25 min of UMP-TA). In addition, ultrasound-assisted polyphenol incorporation could enhance the antioxidant properties of MP, with the DPPH and ABTS radical scavenging rate of UMP-TA increase of 47.7 % and 55.2 % in comparison with MP, respectively. The results demonstrated that the noncovalent combination with polyphenols under ultrasound-assisted conditions endowed MP with better functional properties, including solubility, emulsification, foaming, and antioxidant properties through structure change. This study can provide innovative theoretical guidance for effectively preparing aquatic protein–polyphenol non-covalent complexes with multiple functions and improving the processing and utilization value of aquatic proteins.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.