T. C. Wan, S Pan, X R Wang, Y Cui, Y. D. Yuan, H Y Wang, Q. Ge, J L Liu
{"title":"Renewable energy sharing based on the effect of energy supply from energy transportation and storage side on building load demand","authors":"T. C. Wan, S Pan, X R Wang, Y Cui, Y. D. Yuan, H Y Wang, Q. Ge, J L Liu","doi":"10.1088/1755-1315/1372/1/012019","DOIUrl":null,"url":null,"abstract":"\n To lower environmental-based operation costs, many literatures studied the relationship between the energy generation side (EGS) and building load (BL) demand side based on solar-based integrated energy systems (SIESs), without directly considering the effect of energy from energy transportation and storage side (ETSS) on BL demand, which may result in waste of solar energy extracted. To enhance energy utilization, this study proposed an analysis method that renewable energy source shares among different buildings was investigated based on the supply relationship between energy from the ETSS side and BL demand side. ETSS included an electric boiler/chiller (EB/C), double-effect absorption heat pump (AHP) and tank. According to the energy sources from ETSS and building loads for a hotel, a residence and a hospital on a heating/cooling day. The proposed analysis method was used to develop the potential of available renewable energy through energy sharing from the perspective of the energy consumption differences of the three buildings. The results presented that the potential of renewable energy utilization was further developed by reasonably operating the use and storage of energy sources from ETSS based on the optimization between energy sources from EGS and building loads. Energy source shares among different buildings with different energy consumption characteristics enhanced energy efficiency according to reasonably change the useable time of energy sources from tanks. When a building required a large number of energy sources, the buildings with low energy consumption directly shared renewable energy without considering the use of energy storage. This study can provide a reference for optimizing the design of integrated energy system (IES)-based architecture with different building loads.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"227 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To lower environmental-based operation costs, many literatures studied the relationship between the energy generation side (EGS) and building load (BL) demand side based on solar-based integrated energy systems (SIESs), without directly considering the effect of energy from energy transportation and storage side (ETSS) on BL demand, which may result in waste of solar energy extracted. To enhance energy utilization, this study proposed an analysis method that renewable energy source shares among different buildings was investigated based on the supply relationship between energy from the ETSS side and BL demand side. ETSS included an electric boiler/chiller (EB/C), double-effect absorption heat pump (AHP) and tank. According to the energy sources from ETSS and building loads for a hotel, a residence and a hospital on a heating/cooling day. The proposed analysis method was used to develop the potential of available renewable energy through energy sharing from the perspective of the energy consumption differences of the three buildings. The results presented that the potential of renewable energy utilization was further developed by reasonably operating the use and storage of energy sources from ETSS based on the optimization between energy sources from EGS and building loads. Energy source shares among different buildings with different energy consumption characteristics enhanced energy efficiency according to reasonably change the useable time of energy sources from tanks. When a building required a large number of energy sources, the buildings with low energy consumption directly shared renewable energy without considering the use of energy storage. This study can provide a reference for optimizing the design of integrated energy system (IES)-based architecture with different building loads.