Exploiting protein domain modularity to enable synthetic control of engineered cells

IF 4.7 3区 工程技术 Q2 ENGINEERING, BIOMEDICAL Current Opinion in Biomedical Engineering Pub Date : 2024-07-02 DOI:10.1016/j.cobme.2024.100550
{"title":"Exploiting protein domain modularity to enable synthetic control of engineered cells","authors":"","doi":"10.1016/j.cobme.2024.100550","DOIUrl":null,"url":null,"abstract":"<div><p>The ability to precisely control cellular function in response to external stimuli can enhance the function and safety of cell therapies. In this review, we will detail how the modularity of protein domains has been exploited for cellular control applications, specifically through design of multifunctional synthetic constructs and controllable split moieties. These advances, which build on techniques developed by biologists, protein chemists and drug developers, harness natural evolutionary tendencies of protein domain fusion and fission. In this light, we will highlight recent advances towards the development of novel immunoreceptors, base editors, and cytokines that have achieved intriguing therapeutic potential by taking advantage of well-known protein evolutionary phenomena and have helped cells learn new tricks via synthetic biology. In general, protein modularity, i.e., the relatively facile separation or (re)assembly of functional single protein domains or subdomains, is becoming an enabling phenomenon for cellular engineering by allowing enhanced control of phenotypic responses.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451124000308","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to precisely control cellular function in response to external stimuli can enhance the function and safety of cell therapies. In this review, we will detail how the modularity of protein domains has been exploited for cellular control applications, specifically through design of multifunctional synthetic constructs and controllable split moieties. These advances, which build on techniques developed by biologists, protein chemists and drug developers, harness natural evolutionary tendencies of protein domain fusion and fission. In this light, we will highlight recent advances towards the development of novel immunoreceptors, base editors, and cytokines that have achieved intriguing therapeutic potential by taking advantage of well-known protein evolutionary phenomena and have helped cells learn new tricks via synthetic biology. In general, protein modularity, i.e., the relatively facile separation or (re)assembly of functional single protein domains or subdomains, is becoming an enabling phenomenon for cellular engineering by allowing enhanced control of phenotypic responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用蛋白质结构域模块化实现对工程细胞的合成控制
针对外部刺激精确控制细胞功能的能力可以提高细胞疗法的功能和安全性。在这篇综述中,我们将详细介绍如何利用蛋白质结构域的模块性进行细胞控制应用,特别是通过设计多功能合成结构和可控分裂分子。这些进展以生物学家、蛋白质化学家和药物开发人员开发的技术为基础,利用了蛋白质结构域融合和分裂的自然进化趋势。有鉴于此,我们将重点介绍在开发新型免疫受体、碱基编辑器和细胞因子方面取得的最新进展,这些新技术利用了众所周知的蛋白质进化现象,帮助细胞通过合成生物学学习新的技巧,从而实现了令人感兴趣的治疗潜力。总的来说,蛋白质模块化,即相对容易地分离或(重新)组装功能单一的蛋白质结构域或亚结构域,通过加强对表型反应的控制,正在成为细胞工程的一个有利现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Biomedical Engineering
Current Opinion in Biomedical Engineering Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
2.60%
发文量
59
期刊最新文献
Editorial Board Contents What can protein circuit design learn from DNA nanotechnology? Perspectives on synthetic protein circuits in mammalian cells Using machine learning to enhance and accelerate synthetic biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1