Mark D. Rodefeld MD , Timothy Conover PhD , Richard Figliola PhD , Mike Neary MS , Guruprasad Giridharan PhD , Artem Ivashchenko MEng , Edward M. Bennett PhD
{"title":"Autonomous Fontan pump: Computational feasibility study","authors":"Mark D. Rodefeld MD , Timothy Conover PhD , Richard Figliola PhD , Mike Neary MS , Guruprasad Giridharan PhD , Artem Ivashchenko MEng , Edward M. Bennett PhD","doi":"10.1016/j.xjon.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>After Fontan palliation, patients with single-ventricle physiology are committed to chronic circulatory inefficiency for the duration of their lives. This is due in large part to the lack of a subpulmonary ventricle. A low-pressure rise cavopulmonary assist device can address the subpulmonary deficit and offset the Fontan paradox. We investigated the feasibility of a Fontan pump that is self-powered by tapping reserve pressure energy in the systemic arterial circulation.</div></div><div><h3>Methods</h3><div>A double-inlet, double-outlet rotary pump was designed to augment Fontan flow through the total cavopulmonary connection. Pump power is supplied by a systemic arterial shunt and radial turbine, with a closed-loop shunt return to the common atrium (Q<sub>P</sub>:Q<sub>S</sub> 1:1). Computational fluid dynamic analysis and lumped parameter modeling of pump impact on the Fontan circulation was performed.</div></div><div><h3>Results</h3><div>Findings indicate that a pump that can augment all 4 limbs of total cavopulmonary connection flow (superior vena cava/inferior vena cava inflow; left pulmonary artery/right pulmonary artery outflow) using a systemic arterial shunt powered turbine at a predicted cavopulmonary pressure rise of +2.5 mm Hg. Systemic shunt flow is 1.43 lumped parameter model, 22% cardiac output. Systemic venous pressure is reduced by 1.4 mm Hg with improved ventricular preload and cardiac output.</div></div><div><h3>Conclusions</h3><div>It may be possible to tap reserve pressure energy in the systemic circulation to improve Fontan circulatory efficiency. Further studies are warranted to optimize, fabricate, and test pump designs for hydraulic performance and hemocompatibility. Potential benefits of an autonomous Fontan pump include durable physiologic shift toward biventricular health, freedom from external power, autoregulating function and exercise responsiveness, and improved quality and duration of life.</div></div>","PeriodicalId":74032,"journal":{"name":"JTCVS open","volume":"21 ","pages":"Pages 257-266"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JTCVS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666273624001839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
After Fontan palliation, patients with single-ventricle physiology are committed to chronic circulatory inefficiency for the duration of their lives. This is due in large part to the lack of a subpulmonary ventricle. A low-pressure rise cavopulmonary assist device can address the subpulmonary deficit and offset the Fontan paradox. We investigated the feasibility of a Fontan pump that is self-powered by tapping reserve pressure energy in the systemic arterial circulation.
Methods
A double-inlet, double-outlet rotary pump was designed to augment Fontan flow through the total cavopulmonary connection. Pump power is supplied by a systemic arterial shunt and radial turbine, with a closed-loop shunt return to the common atrium (QP:QS 1:1). Computational fluid dynamic analysis and lumped parameter modeling of pump impact on the Fontan circulation was performed.
Results
Findings indicate that a pump that can augment all 4 limbs of total cavopulmonary connection flow (superior vena cava/inferior vena cava inflow; left pulmonary artery/right pulmonary artery outflow) using a systemic arterial shunt powered turbine at a predicted cavopulmonary pressure rise of +2.5 mm Hg. Systemic shunt flow is 1.43 lumped parameter model, 22% cardiac output. Systemic venous pressure is reduced by 1.4 mm Hg with improved ventricular preload and cardiac output.
Conclusions
It may be possible to tap reserve pressure energy in the systemic circulation to improve Fontan circulatory efficiency. Further studies are warranted to optimize, fabricate, and test pump designs for hydraulic performance and hemocompatibility. Potential benefits of an autonomous Fontan pump include durable physiologic shift toward biventricular health, freedom from external power, autoregulating function and exercise responsiveness, and improved quality and duration of life.