Characteristics of membrane transport, metabolism, and target protein binding of cyclic depsipeptide destruxin E in HeLa cells

IF 2.7 4区 医学 Q2 PHARMACOLOGY & PHARMACY Drug Metabolism and Pharmacokinetics Pub Date : 2024-07-02 DOI:10.1016/j.dmpk.2024.101028
{"title":"Characteristics of membrane transport, metabolism, and target protein binding of cyclic depsipeptide destruxin E in HeLa cells","authors":"","doi":"10.1016/j.dmpk.2024.101028","DOIUrl":null,"url":null,"abstract":"<div><p>Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 μM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H<sup>+</sup> ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.</p></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S134743672400034X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclic peptides have attracted attention as new modalities for drug development owing to their unique pharmacokinetic and pharmacodynamic properties. Destruxin E, a 19-membered cyclodepsipeptide, is a promising candidate drug for cancer therapy. The purpose of the present study was to clarify the molecular mechanisms underlying membrane transport, metabolism, and the binding for target molecules of destruxin E in human cervical carcinoma HeLa cells used as a model of cancer cells. The influx transport and the intracellular metabolism of destruxin E were non-saturable and saturable, respectively, at up to 10 μM. The intracellular amounts of destruxin E and destruxin E-diol after incubation of destruxin E with the cells significantly decreased at 4 °C compared to those at 37 °C. Destruxin E-diol, but not destruxin E, undergoes efflux transport out of cells via P-gp/MDR1/ABCB1 and BCRP/ABCG2. The epoxide hydrolase EPHX2 functions as a potent metabolizing enzyme that can convert the epoxide of destruxin E to the destruxin E-diol. Treatment with an EPHX2 inhibitor increased the intracellular destruxin E levels and enhanced the inhibitory activity of vacuolar type-H+ ATPase. These results suggest that epoxide hydrolase could be a regulatory factor for intracellular destruxin E levels and its pharmacological activity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环去肽去甲芦荟素 E 在 HeLa 细胞中的膜转运、代谢和靶蛋白结合特性
环肽因其独特的药代动力学和药效学特性,作为药物开发的新模式备受关注。Destruxin E 是一种 19 元环十二肽,是一种很有前途的癌症治疗候选药物。本研究旨在阐明 destruxin E 在作为癌细胞模型的人宫颈癌 HeLa 细胞中的膜转运、代谢以及与靶分子结合的分子机制。在 10 μM 以下,去铁素 E 的流入转运和细胞内代谢分别是不可饱和和可饱和的。去铁素 E 与细胞培养后,细胞内去铁素 E 和去铁素 E-二醇的含量在 4 ℃ 时比 37 ℃ 时明显减少。destruxin E-diol(而非 destruxin E)可通过 P-gp/MDR1/ABCB1 和 BCRP/ABCG2 从细胞中外流。环氧化物水解酶 EPHX2 是一种有效的代谢酶,可将去铁素 E 的环氧化物转化为去铁素 E-二醇。使用 EPHX2 抑制剂会增加细胞内去铁素 E 的含量,并增强空泡型-H+ ATPase 的抑制活性。这些结果表明,环氧化物水解酶可能是细胞内去铁素 E 含量及其药理活性的一个调节因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
9.50%
发文量
50
审稿时长
69 days
期刊介绍: DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows: - Drug metabolism / Biotransformation - Pharmacokinetics and pharmacodynamics - Toxicokinetics and toxicodynamics - Drug-drug interaction / Drug-food interaction - Mechanism of drug absorption and disposition (including transporter) - Drug delivery system - Clinical pharmacy and pharmacology - Analytical method - Factors affecting drug metabolism and transport - Expression of genes for drug-metabolizing enzymes and transporters - Pharmacogenetics and pharmacogenomics - Pharmacoepidemiology.
期刊最新文献
Understanding mechanisms of negative food effect for voclosporin using physiologically based pharmacokinetic modeling. Quantitative prediction of CYP3A induction-mediated drug-drug interactions in clinical practice Iminium ion metabolites are formed from nintedanib by human CYP3A4 Genetic variation present in the CYP3A4 gene in Ni-Vanuatu and Kenyan populations in malaria endemicity Physiologically based pharmacokinetic modeling of CYP2C8 substrate rosiglitazone and its metabolite to predict metabolic drug-drug interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1