Cooperative transmission of UAV swarm using orthogonal time–frequency space modulation

IF 4.1 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS ICT Express Pub Date : 2024-12-01 DOI:10.1016/j.icte.2024.07.002
Usman Iqbal , Yejin Lee , Sunghwan Cho , In-Ho Lee , Haejoon Jung
{"title":"Cooperative transmission of UAV swarm using orthogonal time–frequency space modulation","authors":"Usman Iqbal ,&nbsp;Yejin Lee ,&nbsp;Sunghwan Cho ,&nbsp;In-Ho Lee ,&nbsp;Haejoon Jung","doi":"10.1016/j.icte.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) emerge as versatile aerial nodes capable of dynamically filling coverage gaps and enabling mission-critical communication based on their mobile nature. UAV swarms, characterized by the coordinated operation of multiple drones, are employed for a wide range of applications such as surveillance, environmental monitoring, precision farming, and autonomous delivery. While individual UAVs suffer from limited power, group transmissions of UAV swarms can enhance the data rate, reliability, and energy efficiency. However, their mobility may cause severe Doppler spread. The existing orthogonal frequency division multiplexing (OFDM) system exhibits limitations such as susceptibility to the Doppler effect in high-speed mobile environments. To address this issue, orthogonal time–frequency space (OTFS)-aided cooperative transmission (CT) for UAV swarms is considered, which can surmount the aforementioned limitations. The results show the BER improvement of the order of <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup></mrow></math></span> at the SNR value of 10 dB when OTFS modulation is utilized and even better at the higher SNR values. Furthermore, the analytical framework of OTFS-based CT is presented by identifying the key design considerations on the subcarrier spacing, the number of symbols, and the number of subcarriers, which are subject to the maximum speed of the UAV and the cluster size of the UAV swarm. These results provide a significant platform for advancing research in the field of UAV-based CT, especially with the Doppler-resilient OTFS modulation.</div></div>","PeriodicalId":48526,"journal":{"name":"ICT Express","volume":"10 6","pages":"Pages 1240-1246"},"PeriodicalIF":4.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICT Express","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405959524000808","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Unmanned aerial vehicles (UAVs) emerge as versatile aerial nodes capable of dynamically filling coverage gaps and enabling mission-critical communication based on their mobile nature. UAV swarms, characterized by the coordinated operation of multiple drones, are employed for a wide range of applications such as surveillance, environmental monitoring, precision farming, and autonomous delivery. While individual UAVs suffer from limited power, group transmissions of UAV swarms can enhance the data rate, reliability, and energy efficiency. However, their mobility may cause severe Doppler spread. The existing orthogonal frequency division multiplexing (OFDM) system exhibits limitations such as susceptibility to the Doppler effect in high-speed mobile environments. To address this issue, orthogonal time–frequency space (OTFS)-aided cooperative transmission (CT) for UAV swarms is considered, which can surmount the aforementioned limitations. The results show the BER improvement of the order of 103 at the SNR value of 10 dB when OTFS modulation is utilized and even better at the higher SNR values. Furthermore, the analytical framework of OTFS-based CT is presented by identifying the key design considerations on the subcarrier spacing, the number of symbols, and the number of subcarriers, which are subject to the maximum speed of the UAV and the cluster size of the UAV swarm. These results provide a significant platform for advancing research in the field of UAV-based CT, especially with the Doppler-resilient OTFS modulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用正交时频空间调制实现无人机群的合作传输
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ICT Express
ICT Express Multiple-
CiteScore
10.20
自引率
1.90%
发文量
167
审稿时长
35 weeks
期刊介绍: The ICT Express journal published by the Korean Institute of Communications and Information Sciences (KICS) is an international, peer-reviewed research publication covering all aspects of information and communication technology. The journal aims to publish research that helps advance the theoretical and practical understanding of ICT convergence, platform technologies, communication networks, and device technologies. The technology advancement in information and communication technology (ICT) sector enables portable devices to be always connected while supporting high data rate, resulting in the recent popularity of smartphones that have a considerable impact in economic and social development.
期刊最新文献
Editorial Board Reduction of peak-to-average power ratio for FBMC/OQAM signals under the general linear non-symmetrical companding transform with a Laplace distribution Instantaneous received signal strength-based sensor activation for energy-efficient distributed cooperative sensor networks Selfish attack detection and response using cooperative backoff adjustment in wireless sensor networks Cooperative transmission of UAV swarm using orthogonal time–frequency space modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1