Optimization of exhaust ejector with lobed nozzle for marine gas turbine

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2024-07-01 DOI:10.21278/brod75303
Hong Shi, Rui Wang, Yi Xiao, Xiaojian Zhu, Rentong Zheng, Caiyue Song, Zhenrong Liu
{"title":"Optimization of exhaust ejector with lobed nozzle for marine gas turbine","authors":"Hong Shi, Rui Wang, Yi Xiao, Xiaojian Zhu, Rentong Zheng, Caiyue Song, Zhenrong Liu","doi":"10.21278/brod75303","DOIUrl":null,"url":null,"abstract":"To attain high-performance ejector configurations, an ejection characteristic testing system was established initially to validate the reliability of the Realizable k-ε turbulent model. Subsequently, optimization investigations were conducted on lobed nozzle ejectors with various structural parameters. The effects of four key structural parameters, including lobed nozzle expansion angle α, lobed nozzle width d, number of lobes in the nozzle n, and height of the square-to-circle section h, were systematically studied. Furthermore, the CRITIC method was employed for multi-objective evaluation to identify the optimal design configuration for the casing ejector. The research findings revealed that among the structural parameters, the lobed nozzle expansion angle α exerted the greatest influence on the ejection coefficient and pressure loss coefficient. The weights of the evaluation criteria were determined by the CRITIC method as follows: ejection coefficient (49.38%) < pressure loss coefficient (50.62%). The optimal design configuration determined by the CRITIC method included α = 45°, d = 150 mm, n = 14, and h = 600 mm. The resulting enclosure design ensures smooth airflow within the system, preventing the backflow of high-temperature mainstream fluid and heating the enclosure. It also maintains a temperature distribution in the typical cross-section that meets specified requirements. Additionally, it facilitates improved mixing of mainstream and secondary fluid and reduces exhaust gas temperature.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75303","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

To attain high-performance ejector configurations, an ejection characteristic testing system was established initially to validate the reliability of the Realizable k-ε turbulent model. Subsequently, optimization investigations were conducted on lobed nozzle ejectors with various structural parameters. The effects of four key structural parameters, including lobed nozzle expansion angle α, lobed nozzle width d, number of lobes in the nozzle n, and height of the square-to-circle section h, were systematically studied. Furthermore, the CRITIC method was employed for multi-objective evaluation to identify the optimal design configuration for the casing ejector. The research findings revealed that among the structural parameters, the lobed nozzle expansion angle α exerted the greatest influence on the ejection coefficient and pressure loss coefficient. The weights of the evaluation criteria were determined by the CRITIC method as follows: ejection coefficient (49.38%) < pressure loss coefficient (50.62%). The optimal design configuration determined by the CRITIC method included α = 45°, d = 150 mm, n = 14, and h = 600 mm. The resulting enclosure design ensures smooth airflow within the system, preventing the backflow of high-temperature mainstream fluid and heating the enclosure. It also maintains a temperature distribution in the typical cross-section that meets specified requirements. Additionally, it facilitates improved mixing of mainstream and secondary fluid and reduces exhaust gas temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化船用燃气轮机带叶形喷嘴的排气喷射器
为了获得高性能的喷射器配置,首先建立了喷射特性测试系统,以验证可实现k-ε湍流模型的可靠性。随后,对具有不同结构参数的叶片喷嘴喷射器进行了优化研究。系统研究了四个关键结构参数的影响,包括叶状喷嘴膨胀角 α、叶状喷嘴宽度 d、喷嘴中的叶片数 n 和方圆截面高度 h。此外,还采用 CRITIC 方法进行多目标评价,以确定套管喷射器的最佳设计配置。研究结果表明,在结构参数中,叶形喷嘴膨胀角 α 对喷射系数和压力损失系数的影响最大。根据 CRITIC 方法确定的评价标准权重为:喷射系数(49.38%)< 压力损失系数(50.62%)。CRITIC 方法确定的最佳设计配置包括 α = 45°、d = 150 毫米、n = 14 和 h = 600 毫米。由此产生的外壳设计可确保系统内气流顺畅,防止高温主流流体回流并加热外壳。它还能保持典型横截面内的温度分布符合特定要求。此外,它还有助于改善主流流体和次级流体的混合,降低废气温度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Application of an offline grey box method for predicting the manoeuvring performance Four-quadrant propeller hydrodynamic performance mapping for improving ship motion predictions Optimization of exhaust ejector with lobed nozzle for marine gas turbine Control method for the ship track and speed in curved channels Research on temperature distribution in container ship with Type-B LNG fuel tank based on CFD and analytical method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1