YOLOv8-EMSC: A lightweight fire recognition algorithm for large spaces

IF 3.7 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH 安全科学与韧性(英文) Pub Date : 2024-07-14 DOI:10.1016/j.jnlssr.2024.06.003
Deng Li , Tan Yang , Zhou Jin , Wu Si-qi , Liu Quan-yi
{"title":"YOLOv8-EMSC: A lightweight fire recognition algorithm for large spaces","authors":"Deng Li ,&nbsp;Tan Yang ,&nbsp;Zhou Jin ,&nbsp;Wu Si-qi ,&nbsp;Liu Quan-yi","doi":"10.1016/j.jnlssr.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>Stringent fire prevention requirements are imperative in expansive environments. Fire detection in diverse large-scale settings typically relies on sensor-based or AI-driven target detection methods. Traditional fire detectors often suffer from false alarms and missed detections, failing to meet the fire safety requirements of large-scale structures. Many existing target detection algorithms are characterized by substantial model sizes. Some detection terminals in large structures face challenges deploying these models due to constrained computational resources. To address this issue, we propose a lightweight model, YOLOv8-EMSC, derived from YOLOv8n. The incorporation of C2f_EMSC, replacing the C2f module, significantly reduces the model parameters in the enhanced YOLOv8-EMSC model compared to YOLOv8n, thereby enhancing model inference speed. Extensive testing and validation using a custom-built large-scale infrared fire dataset demonstrates a 9.6 % reduction in parameters compared to the baseline model for YOLOv8-EMSC, achieving an average precision of 95.6 %, surpassing both the baseline and mainstream models and significantly enhancing fire detection accuracy in expansive environments.</p></div>","PeriodicalId":62710,"journal":{"name":"安全科学与韧性(英文)","volume":"5 4","pages":"Pages 422-431"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666449624000458/pdfft?md5=fdc79558b475b9f52bfcaa74255aa789&pid=1-s2.0-S2666449624000458-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"安全科学与韧性(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666449624000458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Stringent fire prevention requirements are imperative in expansive environments. Fire detection in diverse large-scale settings typically relies on sensor-based or AI-driven target detection methods. Traditional fire detectors often suffer from false alarms and missed detections, failing to meet the fire safety requirements of large-scale structures. Many existing target detection algorithms are characterized by substantial model sizes. Some detection terminals in large structures face challenges deploying these models due to constrained computational resources. To address this issue, we propose a lightweight model, YOLOv8-EMSC, derived from YOLOv8n. The incorporation of C2f_EMSC, replacing the C2f module, significantly reduces the model parameters in the enhanced YOLOv8-EMSC model compared to YOLOv8n, thereby enhancing model inference speed. Extensive testing and validation using a custom-built large-scale infrared fire dataset demonstrates a 9.6 % reduction in parameters compared to the baseline model for YOLOv8-EMSC, achieving an average precision of 95.6 %, surpassing both the baseline and mainstream models and significantly enhancing fire detection accuracy in expansive environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLOv8-EMSC:适用于大型空间的轻量级火灾识别算法
在广阔的环境中,严格的防火要求势在必行。各种大型环境中的火灾探测通常依赖于基于传感器或人工智能驱动的目标探测方法。传统的火灾探测器经常出现误报和漏检,无法满足大型建筑的消防安全要求。许多现有的目标检测算法都具有模型规模庞大的特点。由于计算资源有限,一些大型结构中的检测终端在部署这些模型时面临挑战。为解决这一问题,我们提出了一种源自 YOLOv8n 的轻量级模型 YOLOv8-EMSC。与 YOLOv8n 相比,在增强型 YOLOv8-EMSC 模型中加入 C2f_EMSC,取代 C2f 模块,大大减少了模型参数,从而提高了模型推理速度。使用定制的大规模红外火灾数据集进行的广泛测试和验证表明,与基线模型相比,YOLOv8-EMSC 的参数减少了 9.6%,平均精度达到 95.6%,超过了基线模型和主流模型,显著提高了在广阔环境中的火灾探测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
安全科学与韧性(英文)
安全科学与韧性(英文) Management Science and Operations Research, Safety, Risk, Reliability and Quality, Safety Research
CiteScore
8.70
自引率
0.00%
发文量
0
审稿时长
72 days
期刊最新文献
Grasping emergency dynamics: A review of group evacuation techniques and strategies in major emergencies Multi-factor coupled forest fire model based on cellular automata Scenario construction and vulnerability assessment of natural hazards-triggered power grid accidents Risk assessment of fire casualty in underground commercial building based on FFTA-BN model Determination of individual disaster resilience levels of hospital staff: A case study of Kartal Dr. Lütfi Kirdar City Hospital
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1