Progress in biomaterials inspired by the extracellular matrix

IF 5.4 1区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY GIANT Pub Date : 2024-07-10 DOI:10.1016/j.giant.2024.100323
Zhuolin Chen , Chengcheng Du , Senrui Liu, Jiacheng Liu, Yaji Yang, Lili Dong, Weikang Zhao, Wei Huang, Yiting Lei
{"title":"Progress in biomaterials inspired by the extracellular matrix","authors":"Zhuolin Chen ,&nbsp;Chengcheng Du ,&nbsp;Senrui Liu,&nbsp;Jiacheng Liu,&nbsp;Yaji Yang,&nbsp;Lili Dong,&nbsp;Weikang Zhao,&nbsp;Wei Huang,&nbsp;Yiting Lei","doi":"10.1016/j.giant.2024.100323","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the extracellular matrix (ECM), biomaterials have emerged as promising strategies in the biomedical research and engineering domain, offering unique characteristics for tissue regeneration, drug delivery, therapeutic interventions, and cellular investigations. The ECM, a dynamic network structure secreted by various cells, primarily comprises diverse proteins capable of facilitating tissue-ECM signaling and regulatory functions through its rich array of bioactive substances and multi-level structural properties. Drawing inspiration from the intricate structure and biochemical composition of natural ECM, researchers have developed various biomaterials to encapsulate these features and create biomimetic microenvironments, such as electrospinning, hydrogels/hydrogel microspheres, decellularized ECM(dECM), and ECM-mimicking peptides. Furthermore, by mimicking the structural composition of ECM components, ECM-inspired biomaterials exhibit varying degrees of ECM functionalization, including providing structural support, cell adhesion, signal transduction, mitigating immune responses, and tissue remodeling. In summary, the advancements in ECM-inspired biomaterials offer significant promise in addressing key challenges in the fields of tissue engineering, regenerative medicine, and drug delivery.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666542524000870/pdfft?md5=ade9827ef2395fc5734a2ad74b8b445c&pid=1-s2.0-S2666542524000870-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666542524000870","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the extracellular matrix (ECM), biomaterials have emerged as promising strategies in the biomedical research and engineering domain, offering unique characteristics for tissue regeneration, drug delivery, therapeutic interventions, and cellular investigations. The ECM, a dynamic network structure secreted by various cells, primarily comprises diverse proteins capable of facilitating tissue-ECM signaling and regulatory functions through its rich array of bioactive substances and multi-level structural properties. Drawing inspiration from the intricate structure and biochemical composition of natural ECM, researchers have developed various biomaterials to encapsulate these features and create biomimetic microenvironments, such as electrospinning, hydrogels/hydrogel microspheres, decellularized ECM(dECM), and ECM-mimicking peptides. Furthermore, by mimicking the structural composition of ECM components, ECM-inspired biomaterials exhibit varying degrees of ECM functionalization, including providing structural support, cell adhesion, signal transduction, mitigating immune responses, and tissue remodeling. In summary, the advancements in ECM-inspired biomaterials offer significant promise in addressing key challenges in the fields of tissue engineering, regenerative medicine, and drug delivery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受细胞外基质启发的生物材料研究进展
在细胞外基质(ECM)的启发下,生物材料已成为生物医学研究和工程领域前景广阔的战略,为组织再生、药物输送、治疗干预和细胞研究提供了独特的特性。ECM 是由各种细胞分泌的动态网络结构,主要由多种蛋白质组成,通过其丰富的生物活性物质和多层次的结构特性,能够促进组织-ECM 的信号传递和调节功能。研究人员从天然 ECM 的复杂结构和生化成分中汲取灵感,开发出各种生物材料来封装这些特征并创建仿生微环境,如电纺丝、水凝胶/水凝胶微球、脱细胞 ECM(dECM)和仿 ECM 肽。此外,通过模仿 ECM 成分的结构组成,受 ECM 启发的生物材料可实现不同程度的 ECM 功能化,包括提供结构支持、细胞粘附、信号转导、减轻免疫反应和组织重塑。总之,ECM 启发生物材料的进步为解决组织工程、再生医学和药物输送领域的关键挑战带来了巨大希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
GIANT
GIANT Multiple-
CiteScore
8.50
自引率
8.60%
发文量
46
审稿时长
42 days
期刊介绍: Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.
期刊最新文献
Small dop of comonomer, giant shift of dynamics: α-methyl-regulated viscoelasticity of poly(methacrylamide) hydrogels The effect of dynamic cross-links and mesogenic groups on the swelling and collapse of polymer gels Binary blends of poly(lactic acid) and poly(methyl methacrylate) for high energy density and charge/discharge efficiency capacitors Systematic anode engineering enabling universal efficiency improvements in organic solar cells Thermal response color-tunable electroluminescent device for real-time visual temperature monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1