A Multi-attribute Decision-making Method for Interval Rough Number Information System Considering Distribution Types

Hongmei Liu, Shizhou Weng
{"title":"A Multi-attribute Decision-making Method for Interval Rough Number Information System Considering Distribution Types","authors":"Hongmei Liu, Shizhou Weng","doi":"10.15837/ijccc.2024.4.6633","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel multi-attribute decision-making (MADM) method for interval rough numbers (IRNs) considering different distribution types, namely uniform, exponential, and normal distributions. Upper and lower approximate interval dominance degrees are defined and aggregated using dynamic weights to obtain pairwise comparisons of IRNs. The properties of dominance are verified, and an attribute weight determination method based on the dominance balance degree is introduced. The proposed MADM method is data-driven and does not rely on the subjective preferences of decision-makers. Case analysis demonstrates the effectiveness and rationality of the proposed method, revealing that the distribution type of IRNs significantly impacts decision results, potentially leading to reversed ranking outcomes. The proposed method offers a comprehensive framework for handling MADM problems with IRNs under different distributions.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"3 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2024.4.6633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel multi-attribute decision-making (MADM) method for interval rough numbers (IRNs) considering different distribution types, namely uniform, exponential, and normal distributions. Upper and lower approximate interval dominance degrees are defined and aggregated using dynamic weights to obtain pairwise comparisons of IRNs. The properties of dominance are verified, and an attribute weight determination method based on the dominance balance degree is introduced. The proposed MADM method is data-driven and does not rely on the subjective preferences of decision-makers. Case analysis demonstrates the effectiveness and rationality of the proposed method, revealing that the distribution type of IRNs significantly impacts decision results, potentially leading to reversed ranking outcomes. The proposed method offers a comprehensive framework for handling MADM problems with IRNs under different distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑分布类型的区间粗略数信息系统多属性决策方法
本文针对区间粗略数(IRN)提出了一种新颖的多属性决策(MADM)方法,该方法考虑了不同的分布类型,即均匀分布、指数分布和正态分布。定义了上下限近似区间支配度,并使用动态权重进行聚合,以获得 IRN 的成对比较。验证了支配度的特性,并介绍了基于支配度平衡度的属性权重确定方法。所提出的 MADM 方法由数据驱动,不依赖决策者的主观偏好。案例分析证明了所提方法的有效性和合理性,揭示了 IRN 的分布类型对决策结果的重大影响,有可能导致排名结果颠倒。所提出的方法提供了一个全面的框架,可用于处理不同分布下具有 IRN 的 MADM 问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Development of an Efficient Demographic-based Movie Recommender System using Hybrid Machine Learning Techniques Resource manager for heterogeneous processors Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network Holiday Peak Load Forecasting Using Grammatical Evolution-Based Fuzzy Regression Approach A Data-Driven Assessment Model for Metaverse Maturity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1