Scoring rules and performance, new analysis of expert judgment data

Gabriela F. Nane, Roger M. Cooke
{"title":"Scoring rules and performance, new analysis of expert judgment data","authors":"Gabriela F. Nane,&nbsp;Roger M. Cooke","doi":"10.1002/ffo2.189","DOIUrl":null,"url":null,"abstract":"<p>A review of scoring rules highlights the distinction between rewarding honesty and rewarding quality. This motivates the introduction of a scale-invariant version of the Continuous Ranked Probability Score (CRPS) which enables statistical accuracy (SA) testing based on an exact rather than an asymptotic distribution of the density of convolutions. A recent data set of 6761 expert probabilistic forecasts for questions for which the actual values are known is used to compare performance. New insights include that (a) variance due to assessed variables dominates variance due to experts, (b) performance on mean absolute percentage error (MAPE) is weakly related to SA (c) scale-invariant CRPS combinations compete with the Classical Model (CM) on SA and MAPE, and (d) CRPS is more forgiving with regard to SA than the CM as CRPS is insensitive to location bias.</p>","PeriodicalId":100567,"journal":{"name":"FUTURES & FORESIGHT SCIENCE","volume":"6 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ffo2.189","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUTURES & FORESIGHT SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ffo2.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A review of scoring rules highlights the distinction between rewarding honesty and rewarding quality. This motivates the introduction of a scale-invariant version of the Continuous Ranked Probability Score (CRPS) which enables statistical accuracy (SA) testing based on an exact rather than an asymptotic distribution of the density of convolutions. A recent data set of 6761 expert probabilistic forecasts for questions for which the actual values are known is used to compare performance. New insights include that (a) variance due to assessed variables dominates variance due to experts, (b) performance on mean absolute percentage error (MAPE) is weakly related to SA (c) scale-invariant CRPS combinations compete with the Classical Model (CM) on SA and MAPE, and (d) CRPS is more forgiving with regard to SA than the CM as CRPS is insensitive to location bias.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评分规则和绩效,对专家判断数据的新分析
对评分规则的回顾强调了诚实奖励和质量奖励之间的区别。这促使我们引入了连续排名概率得分(CRPS)的尺度不变版本,该版本可根据卷积密度的精确分布而非渐近分布进行统计准确性(SA)测试。最近的数据集包含 6761 个专家对已知实际值的问题进行的概率预测,用于比较性能。新发现包括:(a) 评估变量引起的方差主导专家引起的方差;(b) 平均绝对百分比误差 (MAPE) 的性能与 SA 关系不大;(c) 在 SA 和 MAPE 方面,规模不变的 CRPS 组合与经典模型 (CM) 竞争;(d) CRPS 在 SA 方面比 CM 更宽容,因为 CRPS 对位置偏差不敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
期刊最新文献
Envisioning Future Workforce Adaptability: A Multi-Layered Analysis of Skills Ecosystems in Vietnam's Emerging Economy Horizon Scanning Methods for Identification of New and Repurposed Medicines for Stakeholders in the United Kingdom Who Will Govern Cybersecurity in Spain by 2035? Results From a Delphi Study Exploring Pathways for Change: A Practice-Oriented Integration of Foresight and Sustainability Transitions Participation of Civil Society in Security and Defense Foresight Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1