Strategies and models for optimal EV charging station site selection

B. Harshil, G. Nagababu
{"title":"Strategies and models for optimal EV charging station site selection","authors":"B. Harshil, G. Nagababu","doi":"10.1088/1755-1315/1372/1/012106","DOIUrl":null,"url":null,"abstract":"\n In numerous countries worldwide, adopting electric vehicles (EVs) is gaining momentum as a proactive measure to mitigate the detrimental environmental impacts of traditional fuel-powered automobiles. This shift drives exponential growth in the adoption of EVs, prompting the need for comprehensive analysis to optimize charging infrastructure requirements. Developing reliable and sustainable charging infrastructure depends on practical and strategic site selection of EV charging stations. The main challenge is finding a charging solution that maximizes efficiency within limited financial resources. The present review critically assesses methodologies for selecting optimal EV charging station sites, considering technical, environmental, social, and economic factors. Special emphasis is given to social factors such as population density and service accessibility, as well as technical factors like vehicle battery life, charging time, and grid capacity. Environmental impact and feasibility are also vital criteria under evaluation. Through a synthesis of insights from various studies, this review provides a comprehensive overview of the existing models used in EV charging infrastructure site selection. The findings contribute valuable insights for decision-makers, city planners, and other stakeholders in creating sustainable EV charging networks amidst the dynamic landscape of electric mobility.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"23 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In numerous countries worldwide, adopting electric vehicles (EVs) is gaining momentum as a proactive measure to mitigate the detrimental environmental impacts of traditional fuel-powered automobiles. This shift drives exponential growth in the adoption of EVs, prompting the need for comprehensive analysis to optimize charging infrastructure requirements. Developing reliable and sustainable charging infrastructure depends on practical and strategic site selection of EV charging stations. The main challenge is finding a charging solution that maximizes efficiency within limited financial resources. The present review critically assesses methodologies for selecting optimal EV charging station sites, considering technical, environmental, social, and economic factors. Special emphasis is given to social factors such as population density and service accessibility, as well as technical factors like vehicle battery life, charging time, and grid capacity. Environmental impact and feasibility are also vital criteria under evaluation. Through a synthesis of insights from various studies, this review provides a comprehensive overview of the existing models used in EV charging infrastructure site selection. The findings contribute valuable insights for decision-makers, city planners, and other stakeholders in creating sustainable EV charging networks amidst the dynamic landscape of electric mobility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化电动汽车充电站选址的策略和模型
在全球许多国家,采用电动汽车(EV)作为减轻传统燃油汽车对环境造成的有害影响的积极措施,正获得越来越大的发展势头。这种转变推动了电动汽车采用率的指数级增长,促使人们需要进行全面分析,以优化充电基础设施需求。开发可靠、可持续的充电基础设施取决于对电动汽车充电站进行切实可行的战略选址。主要的挑战在于找到一种充电解决方案,在有限的财政资源内实现效率最大化。本综述结合技术、环境、社会和经济因素,对电动汽车充电站最佳选址方法进行了严格评估。其中特别强调了人口密度和服务可达性等社会因素,以及车辆电池寿命、充电时间和电网容量等技术因素。环境影响和可行性也是评估的重要标准。本综述综合了各种研究的观点,全面概述了电动汽车充电基础设施选址中使用的现有模型。研究结果为决策者、城市规划者和其他利益相关者提供了宝贵的见解,帮助他们在电动交通的动态环境中创建可持续的电动汽车充电网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation on solidification process of molten salt-based phase change material as thermal energy storage medium for application in Stirling engine Hydrogen adsorption on titanium-decorated carbyne C12 ring: a DFT study Experimental investigation into the effects of endplate designs for a Savonius turbine Development of zwitterion-functionalized graphene oxide/polyethersulfone nanocomposite membrane and fouling evaluation using solutes of varying charges Wind resource assessment for turbine class identification in Bayanzhaganxiang, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1