{"title":"Mechanism of collision and drainage of liquid droplet around sphere placed within a hollow cylinder","authors":"Prakasha Chandra Sahoo , Jnana Ranjan Senapati , Basanta Kumar Rana","doi":"10.1016/j.compfluid.2024.106365","DOIUrl":null,"url":null,"abstract":"<div><p>It is attempted earnestly to elucidate the mechanism of collision and drainage of liquid mass around the spherical substrate suspended within the hollow cylinder using Gerris open-source code by employing Volume of Fluid (VOF) methodology. Various influencing parameters, namely, sphere-to-droplet diameter ratio <span><math><mrow><mo>(</mo><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow><mo>)</mo></mrow></math></span>, Weber number<span><math><mrow><mspace></mspace><mo>(</mo><mrow><mi>W</mi><mi>e</mi></mrow><mo>)</mo></mrow></math></span>, Ohnesorge number <span><math><mrow><mo>(</mo><mrow><mi>O</mi><mi>h</mi></mrow><mo>)</mo></mrow></math></span>, and Bond number<span><math><mrow><mo>(</mo><mrow><mi>B</mi><mi>o</mi></mrow><mo>)</mo></mrow></math></span> are employed to observe the drainage mechanism through the constricted path. The pattern of the interfacial morphology of droplet collision and drainage mechanism is presented using numerical contours. It is important to mention herein that the droplet undergoes several important stages like collision, cap formation, engulfment, drainage, and pinch-off. The passage between the sphere and the cylinder is sufficiently wider at a lower value of <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> due to which the liquid mass is drained out completely without any hindrance. The drainage process becomes considerably faster at a higher <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> compared to a lower <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>. In addition, the flow of liquid mass through the passage gets delayed at a greater <span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span> than a lower <span><math><mrow><mi>O</mi><mi>h</mi></mrow></math></span> assuming a given value of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span> and <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span>. The liquid drop requires less time to pass through the constricted path at lower <span><math><mrow><mi>B</mi><mi>o</mi></mrow></math></span> for a given value of <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> and <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>. We have also attempted to quantify the drainage of liquid volume passes through the passage, which is denoted as <span><math><mrow><mo>(</mo><mrow><msup><mrow><mi>Q</mi></mrow><mo>*</mo></msup><mo>=</mo><mi>Q</mi><mo>/</mo><msub><mi>Q</mi><mi>o</mi></msub></mrow><mo>)</mo></mrow></math></span>. One can notice the increasing pattern of <span><math><mrow><mi>Q</mi><mo>/</mo><msub><mi>Q</mi><mi>o</mi></msub></mrow></math></span> with continuous progress of time stamp for all cases of <span><math><mrow><msub><mi>D</mi><mi>s</mi></msub><mo>/</mo><msub><mi>D</mi><mi>o</mi></msub></mrow></math></span> for a fixed value of <span><math><mrow><mi>W</mi><mi>e</mi></mrow></math></span>.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106365"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004579302400197X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
It is attempted earnestly to elucidate the mechanism of collision and drainage of liquid mass around the spherical substrate suspended within the hollow cylinder using Gerris open-source code by employing Volume of Fluid (VOF) methodology. Various influencing parameters, namely, sphere-to-droplet diameter ratio , Weber number, Ohnesorge number , and Bond number are employed to observe the drainage mechanism through the constricted path. The pattern of the interfacial morphology of droplet collision and drainage mechanism is presented using numerical contours. It is important to mention herein that the droplet undergoes several important stages like collision, cap formation, engulfment, drainage, and pinch-off. The passage between the sphere and the cylinder is sufficiently wider at a lower value of due to which the liquid mass is drained out completely without any hindrance. The drainage process becomes considerably faster at a higher compared to a lower . In addition, the flow of liquid mass through the passage gets delayed at a greater than a lower assuming a given value of and . The liquid drop requires less time to pass through the constricted path at lower for a given value of and . We have also attempted to quantify the drainage of liquid volume passes through the passage, which is denoted as . One can notice the increasing pattern of with continuous progress of time stamp for all cases of for a fixed value of .
本研究采用流体体积(VOF)方法,使用 Gerris 开源代码,认真尝试阐明悬浮在空心圆柱体内的球形基质周围的液块碰撞和排水机制。采用各种影响参数,即球体与液滴直径比 (Ds/Do)、韦伯数 (We)、奥内索格数 (Oh) 和邦德数 (Bo),来观察通过收缩路径的排水机制。液滴碰撞和排水机制的界面形态是通过数值等值线呈现的。在此有必要提及液滴经历的几个重要阶段,如碰撞、帽形成、吞噬、排水和夹断。当 Ds/Do 值较低时,球体和圆柱体之间的通道足够宽,因此液滴可以毫无阻碍地完全排出。与较低的 We 值相比,较高的 We 值下的排液过程要快得多。此外,在给定 We 和 Ds/Do 值的情况下,Oh 越大,液流通过通道的时间越短。在给定 Ds/Do 和 We 值的情况下,当 Bo 值较低时,液滴通过收缩路径所需的时间较短。我们还尝试量化通过通道的液体体积排水量,即(Q*=Q/Qo)。我们可以注意到,在 We 值固定的情况下,在所有 Ds/Do 条件下,Q/Qo 都会随着时间戳的推移而增加。
期刊介绍:
Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.