Haihui Liu, Qiang Xu, Xiao Zhang, Shuliang Lv, Chang Ma
{"title":"Preparation of high-rate anode materials based on porous highly conductive carbon coating and SiOx disproportionation reaction","authors":"Haihui Liu, Qiang Xu, Xiao Zhang, Shuliang Lv, Chang Ma","doi":"10.1016/j.pnsc.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Silicon monoxide (SiO</span><sub><em>x</em></sub><span><span><span><span>) has garnered considerable attention as an anode material owing to its high capacity. Nevertheless, its commercial viability is hampered by the low conductivity and inadequate cycling stability. In this study, a micrometer-scale silicon oxide/carbon composite (1000-SiOx/NC) was developed based on the porous and high </span>electrical conductivity of pyrolyzed </span>polydopamine (PDA) and the high-temperature </span>disproportionation of SiO</span><sub><em>x</em></sub><span>. Electrochemical impedance spectroscopy<span><span> (EIS) and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the pyrolysis of polydopamine (PDA) not only improves electrode conductivity but also contributes to the formation of a stable </span>solid electrolyte interface (SEI). Additionally, SiO</span></span><sub><em>x</em></sub> undergoes disproportionation reactions during the pyrolysis of PDA, further the improves the cyclic stability of the composites. Consequently, the 1000-SiO<sub><em>x</em></sub>/NC composite electrode exhibited an impressive specific capacity of 783.4 mAh·g<sup>−1</sup> after 500 cycles at 1 A g<sup>−1</sup>, maintaining 80.1 % of its initial capacity. Additionally, at a high rate of 3 C, its capacity reached 607.3 mAh·g<sup>−1</sup> The synthesis approach is both straightforward and economical, offering a fresh avenue for the widespread commercial deployment of SiO<sub><em>x</em></sub>.</p></div>","PeriodicalId":20742,"journal":{"name":"Progress in Natural Science: Materials International","volume":"34 4","pages":"Pages 739-746"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Natural Science: Materials International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002007124001503","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon monoxide (SiOx) has garnered considerable attention as an anode material owing to its high capacity. Nevertheless, its commercial viability is hampered by the low conductivity and inadequate cycling stability. In this study, a micrometer-scale silicon oxide/carbon composite (1000-SiOx/NC) was developed based on the porous and high electrical conductivity of pyrolyzed polydopamine (PDA) and the high-temperature disproportionation of SiOx. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) analyses confirmed that the pyrolysis of polydopamine (PDA) not only improves electrode conductivity but also contributes to the formation of a stable solid electrolyte interface (SEI). Additionally, SiOx undergoes disproportionation reactions during the pyrolysis of PDA, further the improves the cyclic stability of the composites. Consequently, the 1000-SiOx/NC composite electrode exhibited an impressive specific capacity of 783.4 mAh·g−1 after 500 cycles at 1 A g−1, maintaining 80.1 % of its initial capacity. Additionally, at a high rate of 3 C, its capacity reached 607.3 mAh·g−1 The synthesis approach is both straightforward and economical, offering a fresh avenue for the widespread commercial deployment of SiOx.
期刊介绍:
Progress in Natural Science: Materials International provides scientists and engineers throughout the world with a central vehicle for the exchange and dissemination of basic theoretical studies and applied research of advanced materials. The emphasis is placed on original research, both analytical and experimental, which is of permanent interest to engineers and scientists, covering all aspects of new materials and technologies, such as, energy and environmental materials; advanced structural materials; advanced transportation materials, functional and electronic materials; nano-scale and amorphous materials; health and biological materials; materials modeling and simulation; materials characterization; and so on. The latest research achievements and innovative papers in basic theoretical studies and applied research of material science will be carefully selected and promptly reported. Thus, the aim of this Journal is to serve the global materials science and technology community with the latest research findings.
As a service to readers, an international bibliography of recent publications in advanced materials is published bimonthly.