{"title":"Mechanical characteristics, microstructural evolution, and reinforcement mechanisms for a cement-matrix nanocomposite","authors":"Camilla Ronchei , Luciana Mantovani , Daniela Scorza , Andrea Zanichelli , Andrea Bernasconi , Giacomo Magnani , Daniele Pontiroli , Michele Sidoli , Sabrina Vantadori","doi":"10.1016/j.jcomc.2024.100494","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper is focused to understand the reinforcement mechanisms exerted by GO nanosheets to both strengthen and toughen cement-matrix composites since, despite intensive research, such mechanisms are still not completely clear. To such an aim, the mechanical characteristics (that is, mechanical strengths and fracture toughness) of a cement-matrix nanocomposite, with the 0.05 % of GO used as an additive, are experimentally investigated at different curing times. Since reinforcement mechanisms are closely related to cement hydration products, they are qualified and quantified by chemical, mineralogical and microstructural analyses performed at the above times of curing. The present investigation leads to the conclusion that the role of both CSH and AFt content is dominant in strengthen and toughen of cement matrix-nanocomposites with GO used as an additive.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100494"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266668202400063X/pdfft?md5=6b308a673386569e2dae83a74e0a1a4b&pid=1-s2.0-S266668202400063X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266668202400063X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The present paper is focused to understand the reinforcement mechanisms exerted by GO nanosheets to both strengthen and toughen cement-matrix composites since, despite intensive research, such mechanisms are still not completely clear. To such an aim, the mechanical characteristics (that is, mechanical strengths and fracture toughness) of a cement-matrix nanocomposite, with the 0.05 % of GO used as an additive, are experimentally investigated at different curing times. Since reinforcement mechanisms are closely related to cement hydration products, they are qualified and quantified by chemical, mineralogical and microstructural analyses performed at the above times of curing. The present investigation leads to the conclusion that the role of both CSH and AFt content is dominant in strengthen and toughen of cement matrix-nanocomposites with GO used as an additive.
本文的重点是了解 GO 纳米片在增强和韧化水泥基复合材料方面的强化机制,因为尽管进行了深入研究,但这种机制仍不完全清楚。为此,实验研究了以 0.05 % 的 GO 作为添加剂的水泥基纳米复合材料在不同固化时间下的机械特性(即机械强度和断裂韧性)。由于加固机制与水泥水化产物密切相关,因此通过在上述固化时间进行化学、矿物学和微观结构分析,对加固机制进行了定性和定量分析。本研究得出的结论是,在以 GO 为添加剂的水泥基纳米复合材料的增强和增韧过程中,CSH 和 AFt 的含量起着主导作用。