Mechanical characteristics, microstructural evolution, and reinforcement mechanisms for a cement-matrix nanocomposite

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES Composites Part C Open Access Pub Date : 2024-07-01 DOI:10.1016/j.jcomc.2024.100494
{"title":"Mechanical characteristics, microstructural evolution, and reinforcement mechanisms for a cement-matrix nanocomposite","authors":"","doi":"10.1016/j.jcomc.2024.100494","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper is focused to understand the reinforcement mechanisms exerted by GO nanosheets to both strengthen and toughen cement-matrix composites since, despite intensive research, such mechanisms are still not completely clear. To such an aim, the mechanical characteristics (that is, mechanical strengths and fracture toughness) of a cement-matrix nanocomposite, with the 0.05 % of GO used as an additive, are experimentally investigated at different curing times. Since reinforcement mechanisms are closely related to cement hydration products, they are qualified and quantified by chemical, mineralogical and microstructural analyses performed at the above times of curing. The present investigation leads to the conclusion that the role of both CSH and AFt content is dominant in strengthen and toughen of cement matrix-nanocomposites with GO used as an additive.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266668202400063X/pdfft?md5=6b308a673386569e2dae83a74e0a1a4b&pid=1-s2.0-S266668202400063X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266668202400063X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper is focused to understand the reinforcement mechanisms exerted by GO nanosheets to both strengthen and toughen cement-matrix composites since, despite intensive research, such mechanisms are still not completely clear. To such an aim, the mechanical characteristics (that is, mechanical strengths and fracture toughness) of a cement-matrix nanocomposite, with the 0.05 % of GO used as an additive, are experimentally investigated at different curing times. Since reinforcement mechanisms are closely related to cement hydration products, they are qualified and quantified by chemical, mineralogical and microstructural analyses performed at the above times of curing. The present investigation leads to the conclusion that the role of both CSH and AFt content is dominant in strengthen and toughen of cement matrix-nanocomposites with GO used as an additive.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水泥基纳米复合材料的力学特性、微结构演化和加固机制
本文的重点是了解 GO 纳米片在增强和韧化水泥基复合材料方面的强化机制,因为尽管进行了深入研究,但这种机制仍不完全清楚。为此,实验研究了以 0.05 % 的 GO 作为添加剂的水泥基纳米复合材料在不同固化时间下的机械特性(即机械强度和断裂韧性)。由于加固机制与水泥水化产物密切相关,因此通过在上述固化时间进行化学、矿物学和微观结构分析,对加固机制进行了定性和定量分析。本研究得出的结论是,在以 GO 为添加剂的水泥基纳米复合材料的增强和增韧过程中,CSH 和 AFt 的含量起着主导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
期刊最新文献
Effect of processing conditions on the tensile properties of PLA/Jute fabric laminates: Experimental and numerical analysis Finite element mesh transition for local–global modeling of composite structures Integration of ceramic matrix systems into coreless filament wound fiber-reinforced composite lightweight structures for lunar resource utilization Prediction of quasi-static mechanical properties of flexible porous metal rubber structures in ultra-wide temperature range A nonlinear finite element analysis of laminated shells with a damage model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1