Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction
{"title":"Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction","authors":"Quanyou Guo , Yue Yang , Tingting Hu, Hongqi Chu, Lijun Liao, Xuepeng Wang, Zhenzi Li, Liping Guo, Wei Zhou","doi":"10.1016/j.cclet.2024.110235","DOIUrl":null,"url":null,"abstract":"<div><div>The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center. Therefore, the electronic conductivity is a vital parameter for oxygen reduction reaction (ORR). Covalent triazine frameworks (CTFs) have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks. However, the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application. Herein, CTFs were constructed by introducing F and N co-modification for efficient 2e<sup>−</sup> ORR. Compared with the pristine CTF, the co-presence of F, N could increase the conductivity obviously by 1000-fold. As a result, F-N-CTF exhibits enhanced catalytic performance of H<sub>2</sub>O<sub>2</sub> generation and selectivity towards reaction pathways. This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e<sup>−</sup> ORR.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110235"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100184172400754X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high conductivity of electrocatalyst can eliminate the Schottky energy barrier at the interface of heterogeneous phases during an electrocatalytic reaction and accelerate the rapid electron transfer to the catalytic active center. Therefore, the electronic conductivity is a vital parameter for oxygen reduction reaction (ORR). Covalent triazine frameworks (CTFs) have shown great potential application as electrocatalysts in ORR with a merit of the diverse building blocks. However, the intrinsic low conductivity and high impedance of CTFs could be significant setbacks in electrocatalytic application. Herein, CTFs were constructed by introducing F and N co-modification for efficient 2e− ORR. Compared with the pristine CTF, the co-presence of F, N could increase the conductivity obviously by 1000-fold. As a result, F-N-CTF exhibits enhanced catalytic performance of H2O2 generation and selectivity towards reaction pathways. This work reveals the importance of conductivity optimization for CTFs and provides guidance for designing high conductivity non-metallic organic semiconductor catalysts for 2e− ORR.
期刊介绍:
Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.