Synthesis, characterization, and molecular docking studies of novel hippuric acid anhydrides as potential antiurolithic, analgesic and free radical scavenging agents
Zahid Munawar , Kashif ur Rehman Khan , Humaira Nadeem , Saeed Ahmad , M Yasmin Begum , Ayesha Siddiqua , Huma Rao , Muhammad Tariq Khan
{"title":"Synthesis, characterization, and molecular docking studies of novel hippuric acid anhydrides as potential antiurolithic, analgesic and free radical scavenging agents","authors":"Zahid Munawar , Kashif ur Rehman Khan , Humaira Nadeem , Saeed Ahmad , M Yasmin Begum , Ayesha Siddiqua , Huma Rao , Muhammad Tariq Khan","doi":"10.1016/j.jscs.2024.101902","DOIUrl":null,"url":null,"abstract":"<div><p>Hippuric acid is a biotransformation product in humans which is excreted through urine. Dietary intake of phenolic compounds increases its concentration in urine. Hippuric acid is experimentally proved to be a regulator of calcium oxalate super saturation in human urine and has a solvent effect on oxalate salts. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used analgesics employed in associated renal colic of urolithiasis. The objective of the present study was to chemically link hippuric acid through anhydride linkage to various NSAIDs to synthesize potential mutual prodrugs for urolithiasis and associated renal colic. Hippuric acid was linked to eleven NSAIDs through anhydride linkage by first synthesizing hippuryl chloride using oxalyl chloride as chlorinating agent, followed by its reaction with sodium salts of NSAIDs. Structures of obtained compounds were elucidated using UV spectrophotometry, FTIR spectrometry, 1H NMR and C-13 NMR spectrometry. Synthesized compounds were evaluated for <em>in vitro</em> antioxidant, <em>in vivo</em> acute toxicity, <em>in vivo</em> antiurolithic, <em>in vivo</em> analgesic and <em>in vitro</em> hydrolysis studies. Molecular docking analysis on TNF-α and COX-2 was carried out to determine target protein binding. Synthesized compounds showed stability at acidic pH which indicate potential gastro protective effect of synthesized conjugates. Compounds P9 an P6 showed maximum <em>in vivo</em> antiurolithic activity while P9 and P8 showed maximum <em>in vitro</em> antioxidant activity. All the conjugates except P2 showed significant analgesic activity which show that conjugation of hippuric acid to NSAIDs did not result in loss of analgesic potential. Docking studies showed better affinity with TNF-α as compared to COX-2.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101902"},"PeriodicalIF":5.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324000978/pdfft?md5=2502a67c42378a90f69d9bfeec915db3&pid=1-s2.0-S1319610324000978-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324000978","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Hippuric acid is a biotransformation product in humans which is excreted through urine. Dietary intake of phenolic compounds increases its concentration in urine. Hippuric acid is experimentally proved to be a regulator of calcium oxalate super saturation in human urine and has a solvent effect on oxalate salts. Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used analgesics employed in associated renal colic of urolithiasis. The objective of the present study was to chemically link hippuric acid through anhydride linkage to various NSAIDs to synthesize potential mutual prodrugs for urolithiasis and associated renal colic. Hippuric acid was linked to eleven NSAIDs through anhydride linkage by first synthesizing hippuryl chloride using oxalyl chloride as chlorinating agent, followed by its reaction with sodium salts of NSAIDs. Structures of obtained compounds were elucidated using UV spectrophotometry, FTIR spectrometry, 1H NMR and C-13 NMR spectrometry. Synthesized compounds were evaluated for in vitro antioxidant, in vivo acute toxicity, in vivo antiurolithic, in vivo analgesic and in vitro hydrolysis studies. Molecular docking analysis on TNF-α and COX-2 was carried out to determine target protein binding. Synthesized compounds showed stability at acidic pH which indicate potential gastro protective effect of synthesized conjugates. Compounds P9 an P6 showed maximum in vivo antiurolithic activity while P9 and P8 showed maximum in vitro antioxidant activity. All the conjugates except P2 showed significant analgesic activity which show that conjugation of hippuric acid to NSAIDs did not result in loss of analgesic potential. Docking studies showed better affinity with TNF-α as compared to COX-2.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.