首页 > 最新文献

Journal of Saudi Chemical Society最新文献

英文 中文
Ultrasound probe-assisted fabrication of 2,3-disubstituted quinazoline-4(3H)-one framework in the existence of SiO2-decorated nano-scale TiO2 composite and investigating their antibacterial attributes via molecular docking simulations 超声探针辅助制备存在于 SiO2 装饰的纳米级 TiO2 复合材料中的 2,3-二取代喹唑啉-4(3H)-酮框架,并通过分子对接模拟研究其抗菌属性
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.jscs.2024.101942
Mohammad Reza Farhang, Manuchehr Fadaeian, Gholam Reza Najafi, Mahboubeh sadat Sharif
SiO2-decorated nano-scale TiO2 composites have been fabricated via hydrothermal technique (high temperature and pressure) as a robust catalyst. The proposed catalyst was characterized to confirm its structure and composite using characteristics tests. 2,3-disubstituted quinazoline-4(3H)-one framework has been successfully prepared through two paths: reflux and probe ultrasound irradiation (US-probe, 40 W). The efficiency of the two various techniques was comparatively studied on the fundamental properties of the proposed catalyst. According to the obtained results, the US-probe method (due to the cavitation effect) provides favorable reaction conditions (saving energy and time). In this comparative study, SiO2-decorated nano-scale TiO2 composites were selected and used as a heterogeneous catalyst in a US-probe-assisted multicomponent reaction of isatoic anhydride, various aryl aldehydes, and amine components (aryl amines, aliphatic amines, and ammonium acetate). In the following, a variety of pharmaceutical 2,3-disubstituted quinazoline-4(3H)-one derivative were prepared under US-probe conditions and obtained excellent yield (90–97 %) within short reaction time (up to 10 min) due to substantial synergic effect between US-probe and SiO2-decorated nano-scale TiO2 composites. Besides, chemical/thermal stability, eco-friendliness, and recoverability of the catalyst (7 runs) are other outstanding advantages of this research. Using the drug design approach and computational chemistry, the antibacterial attributes of prepared products were finally perused and checked. All synthesized products have a molecular mass of less than 500 g/mol. Computational chemistry data revealed that prepared products bind well to the agonist at the active site of the P37432 protein (docking score between −5.044 and −3.625), which shows within the inactivation of this protein throughout ailment therapy. According to this, it was found that the prepared products will have the potential to become an antibacterial drug.
通过水热技术(高温高压)制备了二氧化硅装饰的纳米级二氧化钛复合材料,作为一种坚固的催化剂。利用特性测试对所提出的催化剂进行了表征,以确认其结构和复合性。2,3-二取代喹唑啉-4(3H)-酮框架已通过两种途径成功制备:回流和探针超声辐照(US-探针,40 W)。研究人员比较了两种不同技术对拟议催化剂基本特性的影响。根据所得结果,US-探针法(由于空化效应)提供了有利的反应条件(节省能源和时间)。在这项比较研究中,选择了 SiO2 装饰的纳米级 TiO2 复合材料作为异相催化剂,用于异酸酐、各种芳基醛和胺组分(芳基胺、脂肪族胺和醋酸铵)的 US-探针辅助多组分反应。随后,在 US-探针条件下制备了多种药物 2,3-二取代喹唑啉-4(3H)-酮衍生物,由于 US-探针和二氧化硅装饰的纳米级 TiO2 复合材料之间的协同效应,在短时间内(最多 10 分钟)获得了极好的产率(90-97%)。此外,催化剂的化学/热稳定性、生态友好性和可回收性(7 次运行)也是该研究的其他突出优势。最后,利用药物设计方法和计算化学,对所制备产品的抗菌特性进行了研究和检验。所有合成产物的分子质量均小于 500 g/mol。计算化学数据显示,制备的产品在 P37432 蛋白的活性位点与激动剂结合良好(对接得分在-5.044 和-3.625 之间),这表明在整个疾病治疗过程中该蛋白处于失活状态。由此可见,制备的产品具有成为抗菌药物的潜力。
{"title":"Ultrasound probe-assisted fabrication of 2,3-disubstituted quinazoline-4(3H)-one framework in the existence of SiO2-decorated nano-scale TiO2 composite and investigating their antibacterial attributes via molecular docking simulations","authors":"Mohammad Reza Farhang,&nbsp;Manuchehr Fadaeian,&nbsp;Gholam Reza Najafi,&nbsp;Mahboubeh sadat Sharif","doi":"10.1016/j.jscs.2024.101942","DOIUrl":"10.1016/j.jscs.2024.101942","url":null,"abstract":"<div><div>SiO<sub>2</sub>-decorated nano-scale TiO<sub>2</sub> composites have been fabricated via hydrothermal technique (high temperature and pressure) as a robust catalyst. The proposed catalyst was characterized to confirm its structure and composite using characteristics tests. 2,3-disubstituted quinazoline-4(3H)-one framework has been successfully prepared through two paths: reflux and probe ultrasound irradiation (US-probe, 40 W). The efficiency of the two various techniques was comparatively studied on the fundamental properties of the proposed catalyst. According to the obtained results, the US-probe method (due to the cavitation effect) provides favorable reaction conditions (saving energy and time). In this comparative study, SiO<sub>2</sub>-decorated nano-scale TiO<sub>2</sub> composites were selected and used as a heterogeneous catalyst in a US-probe-assisted multicomponent reaction of isatoic anhydride, various aryl aldehydes, and amine components (aryl amines, aliphatic amines, and ammonium acetate). In the following, a variety of pharmaceutical 2,3-disubstituted quinazoline-4(3H)-one derivative were prepared under US-probe conditions and obtained excellent yield (90–97 %) within short reaction time (up to 10 min) due to substantial synergic effect between US-probe and SiO<sub>2</sub>-decorated nano-scale TiO<sub>2</sub> composites. Besides, chemical/thermal stability, eco-friendliness, and recoverability of the catalyst (7 runs) are other outstanding advantages of this research. Using the drug design approach and computational chemistry, the antibacterial attributes of prepared products were finally perused and checked. All synthesized products have a molecular mass of less than 500 g/mol. Computational chemistry data revealed that prepared products bind well to the agonist at the active site of the P37432 protein (docking score between −5.044 and −3.625), which shows within the inactivation of this protein throughout ailment therapy. According to this, it was found that the prepared products will have the potential to become an antibacterial drug.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101942"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent developments in carbon nitride for enhanced photocatalytic carbon dioxide reduction: A review
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.jscs.2024.101956
Tehmeena Ishaq , Rabia Naeem , Ayesha Qayyum , Maryam Yousaf , Zainab Ehsan , Aamal A. Al-Mutairi , Ali Irfan , Sami A. Al-Hussain , Rab Nawaz , Magdi E.A. Zaki
In recent years, carbon dioxide removal has been a hot topic due to increased global warming, and photocatalytic reduction of CO2 can be the best stratagem to reduce its concentration. Among many catalysts, graphitic carbon nitride (g-C3N4) can be the best choice for CO2 removal due to its promising band gap and superior physicochemical stability. The current review explains the thermodynamics of CO2 removal and benchmarks the essential requirements for its improved kinetics. It further highlights recent developments in the g-C3N4-based catalysts, which include morphological adjustments, heterojunctions, defect engineering, doping, and composite fabrication. Moreover, the impact of metal oxides and sulfides on band structure and the catalytic behavior of g-C3N4 is demonstrated. In summary, this review article provides an in-depth analysis of the various endeavors made to improve the photocatalytic tenders of the g-C3N4 for enhancing its CO2 removal activity and can be a worthwhile addition to the literature for its great ideas to address environmental pollution in terms of CO2 reduction.
{"title":"Recent developments in carbon nitride for enhanced photocatalytic carbon dioxide reduction: A review","authors":"Tehmeena Ishaq ,&nbsp;Rabia Naeem ,&nbsp;Ayesha Qayyum ,&nbsp;Maryam Yousaf ,&nbsp;Zainab Ehsan ,&nbsp;Aamal A. Al-Mutairi ,&nbsp;Ali Irfan ,&nbsp;Sami A. Al-Hussain ,&nbsp;Rab Nawaz ,&nbsp;Magdi E.A. Zaki","doi":"10.1016/j.jscs.2024.101956","DOIUrl":"10.1016/j.jscs.2024.101956","url":null,"abstract":"<div><div>In recent years, carbon dioxide removal has been a hot topic due to increased global warming, and photocatalytic reduction of CO<sub>2</sub> can be the best stratagem to reduce its concentration. Among many catalysts, graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) can be the best choice for CO<sub>2</sub> removal due to its promising band gap and superior physicochemical stability. The current review explains the thermodynamics of CO<sub>2</sub> removal and benchmarks the essential requirements for its improved kinetics. It further highlights recent developments in the g-C<sub>3</sub>N<sub>4</sub>-based catalysts, which include morphological adjustments, heterojunctions, defect engineering, doping, and composite fabrication. Moreover, the impact of metal oxides and sulfides on band structure and the catalytic behavior of g-C<sub>3</sub>N<sub>4</sub> is demonstrated. In summary, this review article provides an in-depth analysis of the various endeavors made to improve the photocatalytic tenders of the g-C<sub>3</sub>N<sub>4</sub> for enhancing its CO<sub>2</sub> removal activity and can be a worthwhile addition to the literature for its great ideas to address environmental pollution in terms of CO<sub>2</sub> reduction.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101956"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bimetallic NiAg supported on aminopropyl-functionalized periodic mesoporous organosilica as a reusable catalyst for CO2 conversion to value-added chemicals
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.jscs.2024.101954
Iman Abdullah, Patrik Chandra, Yuni Krisyuningsih Krisnandi
Transforming CO2 into more valuable chemicals has gained great interest due to greenhouse gas and climate change related issues. In this study, we performed CO2 hydrogenation using a bimetallic nickel-silver catalyst supported on periodic mesoporous organosilica (NiAg/NH2-pr-Ph-PMO). The NH2pr-Ph-PMO was prepared via a co-condensation method, and NiAg was was incorporated using a simple wet impregnation process. Physicochemical properties of the catalyst were thoroughly characterized using FTIR, XRD, SEM-EDX, TEM, and BET-BJH. The synthesized NiAg/NH2pr-Ph-PMO exhibited excellent properties, including a large surface area (793.5 m2/g) and uniform metal distribution. The optimal conditions for CO2 hydrogenation found in this study were 225 °C, 2 bar, and a CO2/H2 ratio of 1:5. Under these conditions, conversion of CO2 reached 38.34 % with 86.89 % selectivity towards formaldehyde production. Furthermore, NiAg/NH2pr-Ph-PMO exhibits fine catalytic stability with the CO2 conversion maintained above 35 % after 4 reaction cycles. FTIR analysis indicates no significant structural damage on the used catalyst, highlighting its robustness. This study showcases the excellent performance of the novel catalyst in converting CO2 into more valuable chemicals.
{"title":"Bimetallic NiAg supported on aminopropyl-functionalized periodic mesoporous organosilica as a reusable catalyst for CO2 conversion to value-added chemicals","authors":"Iman Abdullah,&nbsp;Patrik Chandra,&nbsp;Yuni Krisyuningsih Krisnandi","doi":"10.1016/j.jscs.2024.101954","DOIUrl":"10.1016/j.jscs.2024.101954","url":null,"abstract":"<div><div>Transforming CO<sub>2</sub> into more valuable chemicals has gained great interest due to greenhouse gas and climate change related issues. In this study, we performed CO<sub>2</sub> hydrogenation using a bimetallic nickel-silver catalyst supported on periodic mesoporous organosilica (NiAg/NH<sub>2</sub>-pr-Ph-PMO). The NH<sub>2</sub>pr-Ph-PMO was prepared via a co-condensation method, and NiAg was was incorporated using a simple wet impregnation process. Physicochemical properties of the catalyst were thoroughly characterized using FTIR, XRD, SEM-EDX, TEM, and BET-BJH. The synthesized NiAg/NH<sub>2</sub>pr-Ph-PMO exhibited excellent properties, including a large surface area (793.5 m<sup>2</sup>/g) and uniform metal distribution. The optimal conditions for CO<sub>2</sub> hydrogenation found in this study were 225 °C, 2 bar, and a CO<sub>2</sub>/H<sub>2</sub> ratio of 1:5. Under these conditions, conversion of CO<sub>2</sub> reached 38.34 % with 86.89 % selectivity towards formaldehyde production. Furthermore, NiAg/NH<sub>2</sub>pr-Ph-PMO exhibits fine catalytic stability with the CO<sub>2</sub> conversion maintained above 35 % after 4 reaction cycles. FTIR analysis indicates no significant structural damage on the used catalyst, highlighting its robustness. This study showcases the excellent performance of the novel catalyst in converting CO<sub>2</sub> into more valuable chemicals.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101954"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143129054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile hydrothermal synthesis of melamine-based polymers for photocatalytic hydrogen evolution 光催化析氢用三聚氰胺基聚合物的水热合成
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.jscs.2024.101955
Yunyan Wu , Ting Tan , Caihong Song , Xing Liu
Solar photocatalytic hydrogen evolution from water splitting has been recognized as a promising hydrogen production technology, the development of efficient, cheap, and practical new photocatalysts is the key to realizing this technology. Compared with semiconductor photocatalysts, polymeric photocatalysts have emerged due to their high structural diversity and adjustable band gaps. The synthesis process of the polymeric photocatalysts is generally complicated, and the reaction conditions are also harsh (such as oxygen free, using catalyst). In this work, melamine-based polymers (MP-1 and MP-2) were synthesized by a simple one-step hydrothermal method using melamine (MA) and p-phthalaldehyde (PPA) as precursors under air atmosphere without any additives. MP-1 and MP-2 display photocatalytic H2 evolution from water splitting in the presence of Pt as a co-catalyst and TEOA as a sacrificial hole scavenger. The effect of different structure of polymers on photocatalytic H2 evolution was discussed. The hydrogen evolution rate of MP-1 is 1784.2 umol·h−1·g−1, distinctly higher than that of MP-2 (1139.8 umol·h−1·g−1). The separation and migration of photoinduced carriers for MP-1 and MP-2 were investigated by electrochemical measurements and PL. It is thought that the imine (–C = N–) structure of MP-1 has a good conjugated system, which could generate more photoinduced electron-hole pairs under light excitation, and the charge migration is also more facile, compared with the aminal structure (–N–C–N–) of MP-2. This study is expected to contribute toward the development of “green hydrogen” using solar photocatalysis over synthetically facile polymeric photocatalysts.
太阳能光催化水裂解析氢已被公认为一种很有前途的制氢技术,开发高效、廉价、实用的新型光催化剂是实现该技术的关键。与半导体光催化剂相比,聚合物光催化剂因其结构多样性高和带隙可调而得到广泛应用。聚合光催化剂的合成过程一般比较复杂,反应条件也比较苛刻(如无氧、使用催化剂等)。本文以三聚氰胺(MA)和对邻苯二醛(PPA)为前驱体,在无添加剂的空气气氛下,采用简单一步水热法合成了三聚氰胺基聚合物(MP-1和MP-2)。MP-1和MP-2在Pt作为助催化剂和TEOA作为牺牲孔清除剂存在下,表现出光催化氢的析出。讨论了不同聚合物结构对光催化析氢的影响。MP-1的析氢速率为1784.2 umol·h−1·g−1,明显高于MP-2的1139.8 umol·h−1·g−1。通过电化学测量和PL研究了MP-1和MP-2的光诱导载流子的分离和迁移。认为MP-1的亚胺(c = N -)结构具有良好的共轭体系,与MP-2的动物结构(- N - c - N -)相比,在光激发下可以产生更多的光诱导电子-空穴对,并且电荷迁移也更容易。该研究有望为利用太阳能光催化制备“绿色氢”而不是合成易降解聚合物光催化剂做出贡献。
{"title":"Facile hydrothermal synthesis of melamine-based polymers for photocatalytic hydrogen evolution","authors":"Yunyan Wu ,&nbsp;Ting Tan ,&nbsp;Caihong Song ,&nbsp;Xing Liu","doi":"10.1016/j.jscs.2024.101955","DOIUrl":"10.1016/j.jscs.2024.101955","url":null,"abstract":"<div><div>Solar photocatalytic hydrogen evolution from water splitting has been recognized as a promising hydrogen production technology, the development of efficient, cheap, and practical new photocatalysts is the key to realizing this technology. Compared with semiconductor photocatalysts, polymeric photocatalysts have emerged due to their high structural diversity and adjustable band gaps. The synthesis process of the polymeric photocatalysts is generally complicated, and the reaction conditions are also harsh (such as oxygen free, using catalyst). In this work, melamine-based polymers (MP-1 and MP-2) were synthesized by a simple one-step hydrothermal method using melamine (MA) and <em>p</em>-phthalaldehyde (PPA) as precursors under air atmosphere without any additives. MP-1 and MP-2 display photocatalytic H<sub>2</sub> evolution from water splitting in the presence of Pt as a co-catalyst and TEOA as a sacrificial hole scavenger. The effect of different structure of polymers on photocatalytic H<sub>2</sub> evolution was discussed. The hydrogen evolution rate of MP-1 is 1784.2 umol·h<sup>−1</sup>·g<sup>−1</sup>, distinctly higher than that of MP-2 (1139.8 umol·h<sup>−1</sup>·g<sup>−1</sup>). The separation and migration of photoinduced carriers for MP-1 and MP-2 were investigated by electrochemical measurements and PL. It is thought that the imine (–C = N–) structure of MP-1 has a good conjugated system, which could generate more photoinduced electron-hole pairs under light excitation, and the charge migration is also more facile, compared with the aminal structure (–N–C–N–) of MP-2. This study is expected to contribute toward the development of “green hydrogen” using solar photocatalysis over synthetically facile polymeric photocatalysts.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101955"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142757466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced antibacterial testing and latent fingerprint detection using dichlorofluorescein-doped carbon dots 使用掺杂二氯荧光素的碳点增强抗菌测试和潜在指纹检测功能
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.jscs.2024.101952
Aphinya Thinthasit , Elvaro Islami Muryadi , Syamsun Jaya , David Nugroho , Saksit Chanthai , Rachadaporn Benchawattananon
This research presents an innovative multifunctional reagent consisting of dichlorofluorescein-doped carbon dots (CDs-DC) generated from fresh coconut water by a hydrothermal method. This work’s innovation resides in the simultaneous application of CDs-DC for latent fingerprint detection on nonporous surfaces and improved antibacterial efficacy. The incorporation of dichlorofluorescein into the CDs matrix enhances photoluminescent characteristics and improves antibacterial effectiveness against Gram-positive and Gram-negative bacteria (Escherichia coli, Serratia marcescens, Bacillus megaterium, Staphylococcus aureus). The addition of a starch matrix significantly strengthened this combination, enhancing the adherence and recognition of complex fingerprint patterns under UV light. Furthermore, the CDs-DC demonstrated significant reactive oxygen species (ROS) production, enhancing their antibacterial efficacy. This dual-functional device represents a notable progression in forensic science and antibacterial technology, establishing itself as a sustainable and highly efficient instrument for these purposes.
本研究提出了一种创新型多功能试剂,由掺杂二氯荧光素的碳点(CDs-DC)组成,该碳点由新鲜椰子水通过水热法生成。这项研究的创新之处在于将 CDs-DC 同时应用于无孔表面的潜伏指纹检测,并提高了抗菌功效。在光盘基质中加入二氯荧光素可增强光致发光特性,并提高对革兰氏阳性和革兰氏阴性细菌(大肠杆菌、肉豆蔻沙雷氏菌、巨大芽孢杆菌、金黄色葡萄球菌)的抗菌效果。淀粉基质的加入大大加强了这一组合,增强了在紫外光下对复杂指纹图案的附着和识别能力。此外,CDs-DC 还能产生大量活性氧 (ROS),从而增强其抗菌功效。这种双功能装置代表了法医学和抗菌技术的显著进步,使其成为一种可持续的高效工具。
{"title":"Enhanced antibacterial testing and latent fingerprint detection using dichlorofluorescein-doped carbon dots","authors":"Aphinya Thinthasit ,&nbsp;Elvaro Islami Muryadi ,&nbsp;Syamsun Jaya ,&nbsp;David Nugroho ,&nbsp;Saksit Chanthai ,&nbsp;Rachadaporn Benchawattananon","doi":"10.1016/j.jscs.2024.101952","DOIUrl":"10.1016/j.jscs.2024.101952","url":null,"abstract":"<div><div>This research presents an innovative multifunctional reagent consisting of dichlorofluorescein-doped carbon dots (CDs-DC) generated from fresh coconut water by a hydrothermal method. This work’s innovation resides in the simultaneous application of CDs-DC for latent fingerprint detection on nonporous surfaces and improved antibacterial efficacy. The incorporation of dichlorofluorescein into the CDs matrix enhances photoluminescent characteristics and improves antibacterial effectiveness against Gram-positive and Gram-negative bacteria (<em>Escherichia coli</em>, <em>Serratia marcescens</em>, <em>Bacillus megaterium</em>, <em>Staphylococcus aureus)</em>. The addition of a starch matrix significantly strengthened this combination, enhancing the adherence and recognition of complex fingerprint patterns under UV light. Furthermore, the CDs-DC demonstrated significant reactive oxygen species (ROS) production, enhancing their antibacterial efficacy. This dual-functional device represents a notable progression in forensic science and antibacterial technology, establishing itself as a sustainable and highly efficient instrument for these purposes.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101952"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
UV-light-induced photocatalytic degradation of organic pesticides in agricultural soils with Fe2O3 and H2O2 Fe2O3和H2O2对农业土壤中有机农药的光催化降解研究
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-11-01 DOI: 10.1016/j.jscs.2024.101953
Amal BaQais , Mohamed H. El-Saeid , Mashael Alshabanat
Organic pesticides pose significant concerns as primary sources of soil contamination in agricultural areas, and their potential to bioaccumulate in humans through the consumption of contaminated crops adds to the urgency of addressing this issue. This study looks at 18 different types of pesticides found in natural soil samples from farming areas. The pesticides are divided into four groups: organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The study investigates how the five most common pesticides (Atrazine, Chlorpyrifos methyl, Dimethoate, Heptachlor, and Methomyl) degrade when exposed to UV radiation at a wavelength of 306 nm, with or without 0.5 % Fe2O3 and 0.5 % H2O2 photocatalysts. The results demonstrate complete photolysis of all pesticides over irradiation periods ranging from 26 to 96 h under UV radiation. It is notable that by incorporating Fe2O3 and H2O2, the degradation of pesticides was enhanced significantly compared to photolysis alone, achieving complete photocatalytic degradation within 8–11 h of irradiation. It is worth mentioning that Fe2O3 + H2O2 exhibits superior photocatalytic efficiency compared to Fe2O3. Furthermore, the highly toxic and persistent organochlorine heptachlor was successfully degraded in soil within 5 h using the Fe2O3 + H2O2 photocatalyst. The research provides a comprehensive understanding of the intricate mechanisms underlying the photocatalytic deterioration of these pesticides. This study offers valuable insights for designing effective UV-light-driven photocatalysts for environmental remediation.
有机农药作为农业地区土壤污染的主要来源,引起了人们的重大关注,它们可能通过食用受污染的作物在人体中进行生物积累,这增加了解决这一问题的紧迫性。这项研究着眼于在农业地区的自然土壤样本中发现的18种不同类型的杀虫剂。农药分为四类:有机氯(OCP)、有机磷(OPP)、氨基甲酸酯(Carb)和拟除虫菊酯(Pyrth)。该研究调查了五种最常见的农药(莠去津、毒死蜱、乐果、七氯胺和灭多威)在306 nm波长的紫外线辐射下,在有或没有0.5% Fe2O3和0.5% H2O2光催化剂的情况下是如何降解的。结果表明,在紫外线照射下,所有农药在26 ~ 96 h的照射时间内完全光解。值得注意的是,与单独光解相比,加入Fe2O3和H2O2对农药的降解明显增强,在照射8-11 h内实现了完全的光催化降解。值得一提的是,与Fe2O3相比,Fe2O3 + H2O2表现出更好的光催化效率。此外,使用Fe2O3 + H2O2光催化剂,在5 h内成功地降解了土壤中的高毒性持久性有机氯七氯。该研究为这些农药光催化降解的复杂机制提供了一个全面的理解。本研究为设计有效的紫外光驱动环境修复光催化剂提供了有价值的见解。
{"title":"UV-light-induced photocatalytic degradation of organic pesticides in agricultural soils with Fe2O3 and H2O2","authors":"Amal BaQais ,&nbsp;Mohamed H. El-Saeid ,&nbsp;Mashael Alshabanat","doi":"10.1016/j.jscs.2024.101953","DOIUrl":"10.1016/j.jscs.2024.101953","url":null,"abstract":"<div><div>Organic pesticides pose significant concerns as primary sources of soil contamination in agricultural areas, and their potential to bioaccumulate in humans through the consumption of contaminated crops adds to the urgency of addressing this issue. This study looks at 18 different types of pesticides found in natural soil samples from farming areas. The pesticides are divided into four groups: organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The study investigates how the five most common pesticides (Atrazine, Chlorpyrifos methyl, Dimethoate, Heptachlor, and Methomyl) degrade when exposed to UV radiation at a wavelength of 306 nm, with or without 0.5 % Fe<sub>2</sub>O<sub>3</sub> and 0.5 % H<sub>2</sub>O<sub>2</sub> photocatalysts. The results demonstrate complete photolysis of all pesticides over irradiation periods ranging from 26 to 96 h under UV radiation. It is notable that by incorporating Fe<sub>2</sub>O<sub>3</sub> and H<sub>2</sub>O<sub>2</sub>, the degradation of pesticides was enhanced significantly compared to photolysis alone, achieving complete photocatalytic degradation within 8–11 h of irradiation. It is worth mentioning that Fe<sub>2</sub>O<sub>3</sub> + H<sub>2</sub>O<sub>2</sub> exhibits superior photocatalytic efficiency compared to Fe<sub>2</sub>O<sub>3</sub>. Furthermore, the highly toxic and persistent organochlorine heptachlor was successfully degraded in soil within 5 h using the Fe<sub>2</sub>O<sub>3</sub> + H<sub>2</sub>O<sub>2</sub> photocatalyst. The research provides a comprehensive understanding of the intricate mechanisms underlying the photocatalytic deterioration of these pesticides. This study offers valuable insights for designing effective UV-light-driven photocatalysts for environmental remediation.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101953"},"PeriodicalIF":5.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142748643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and assessment of vanadium-based metal–organic frameworks for the effective elimination of hazardous pesticides from aqueous solutions: Mechanism of uptake, adsorption capacities, rate of uptake, and enhancement via the Box-Behnken design 开发和评估用于有效消除水溶液中有害农药的钒基金属有机框架:吸收机制、吸附能力、吸收率以及通过 Box-Behnken 设计提高吸收率
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-13 DOI: 10.1016/j.jscs.2024.101949
Abeer Abdulaziz H. Bukhari
Vanadium metal–organic frameworks (V-MOF) has a great potential to remove contaminants from water that come from agriculture wastewater methyl parathion (MP) pesticides with high effectiveness. Using a variety of methods, such as SEM, FT-IR, XPS), XRD, and BET analysis, the adsorbent was successfully synthesized and characterized. The dimensions of the pores measured at 1.33 nm correspond to the classification of micropores under the IUPAC system. Before the adsorption process, the material had a surface area of 1489.42 m2/g and a pore volume of 0.98 cc/g. After MP adsorption, the surface area, pore size, and pore volume decreased to 1268.42 m2/g, 1.12 nm, and 0.64 cc/g, respectively. Changes in the material’s physical properties indicate that the adsorption process had an effect. 7.2 was the result of controlling the point of zero charge through surface characterization. This information suggests that the surface of the adsorbent has a positive charge at pH below 7.2 and at the pH higher than this value the surface will have a negative charge. It was also looked into how pH affected the adsorption equilibrium. Although fitting to Langmuir isothermally, the kinetics of MP adsorption onto V-MOF are pseudo-second-order fitting. It is very probable that chemisorption was the mode of adsorption because the adsorption energy was 23.62 kJ.mol−1. The enthalpy (ΔHo) values obtained as a result of studying the thermodynamic parameters are positive, demonstrating that, within this temperature range, the pesticide adsorption process was endothermic., measuring 32.79 kJ.mol−1. Entropy (ΔSo) readings that are positive indicate that the system’s randomness increased during the adsorption process, reaching 119 J.mol−1K−1, and with rising temperatures, the negative of ΔGo rise. The effectiveness of the recommended adsorbent was evaluated by filtering wastewater samples in a laboratory environment. It is hypothesized that V-MOF and MP will interact by pore filling, π-π interaction, H-bonding, electrostatic contact, and other possible methods. Considering the specifics of this interaction in great detail is essential to comprehending the nature of adsorption and effectively constructing the adsorbent for use in real-world applications. Water filtering and the treatment of industrial effluents were made simple and effective by the use of V-MOF adsorbent technology. The results indicated that 383.6 mg/g was the maximal adsorption capacity at pH = 6. To evaluate the renewal of the adsorbent, more tests were carried out, and the outcomes showed that the renewal continued even after more than six cycles. The stability of the adsorbent during regeneration was confirmed by using XRD and FT-IR. The Box Behnken design (BBD) was then employed to optimize the adsorption outcomes.
钒金属有机框架(V-MOF)在高效去除来自农业废水甲基对硫磷(MP)农药的水中污染物方面具有巨大潜力。利用 SEM、FT-IR、XPS)、XRD 和 BET 分析等多种方法,成功合成并表征了该吸附剂。测量到的孔隙尺寸为 1.33 nm,符合 IUPAC 系统中的微孔分类。吸附前,材料的表面积为 1489.42 m2/g,孔体积为 0.98 cc/g。吸附 MP 后,表面积、孔径和孔体积分别降至 1268.42 m2/g、1.12 nm 和 0.64 cc/g。材料物理性质的变化表明吸附过程产生了影响。7.2 是通过表面表征控制零电荷点的结果。这一信息表明,当 pH 值低于 7.2 时,吸附剂表面带有正电荷,而当 pH 值高于该值时,表面则带有负电荷。我们还研究了 pH 值对吸附平衡的影响。虽然与 Langmuir 等温拟合,但 MP 在 V-MOF 上的吸附动力学却是伪二阶拟合。由于吸附能为 23.62 kJ.mol-1,因此化学吸附很可能是吸附模式。热力学参数研究得出的焓(ΔHo)值为正值,表明在该温度范围内,农药吸附过程是内热的,为 32.79 kJ.mol-1。熵(ΔSo)读数为正,表明在吸附过程中系统的随机性增加,达到 119 J.mol-1K-1,而且随着温度的升高,ΔGo 的负值也在增加。通过在实验室环境中过滤废水样本,对所推荐的吸附剂的效果进行了评估。根据假设,V-MOF 和 MP 将通过孔隙填充、π-π 相互作用、H 键、静电接触和其他可能的方法发生相互作用。详细考虑这种相互作用的具体细节,对于理解吸附的本质和有效构建用于实际应用的吸附剂至关重要。通过使用 V-MOF 吸附技术,水过滤和工业废水处理变得简单而有效。结果表明,pH=6 时的最大吸附容量为 383.6 毫克/克。为了评估吸附剂的再生能力,还进行了更多的测试,结果表明,即使经过六个以上的循环,吸附剂的再生能力仍在持续。使用 XRD 和 FT-IR 证实了吸附剂在再生过程中的稳定性。然后采用盒式贝肯设计(BBD)来优化吸附结果。
{"title":"Development and assessment of vanadium-based metal–organic frameworks for the effective elimination of hazardous pesticides from aqueous solutions: Mechanism of uptake, adsorption capacities, rate of uptake, and enhancement via the Box-Behnken design","authors":"Abeer Abdulaziz H. Bukhari","doi":"10.1016/j.jscs.2024.101949","DOIUrl":"10.1016/j.jscs.2024.101949","url":null,"abstract":"<div><div>Vanadium metal–organic frameworks (V-MOF) has a great potential to remove contaminants from water that come from agriculture wastewater methyl parathion (MP) pesticides with high effectiveness. Using a variety of methods, such as SEM, FT-IR, XPS), XRD, and BET analysis, the adsorbent was successfully synthesized and characterized. The dimensions of the pores measured at 1.33 nm correspond to the classification of micropores under the IUPAC system. Before the adsorption process, the material had a surface area of 1489.42 m<sup>2</sup>/g and a pore volume of 0.98 cc/g. After MP adsorption, the surface area, pore size, and pore volume decreased to 1268.42 m<sup>2</sup>/g, 1.12 nm, and 0.64 cc/g, respectively. Changes in the material’s physical properties indicate that the adsorption process had an effect. 7.2 was the result of controlling the point of zero charge through surface characterization. This information suggests that the surface of the adsorbent has a positive charge at pH below 7.2 and at the pH higher than this value the surface will have a negative charge. It was also looked into how pH affected the adsorption equilibrium. Although fitting to Langmuir isothermally, the kinetics of MP adsorption onto V-MOF are pseudo-second-order fitting. It is very probable that chemisorption was the mode of adsorption because the adsorption energy was 23.62 kJ.mol<sup>−1</sup>. The enthalpy (ΔH<sup>o</sup>) values obtained as a result of studying the thermodynamic parameters are positive, demonstrating that, within this temperature range, the pesticide adsorption process was endothermic., measuring 32.79 kJ.mol<sup>−1</sup>. Entropy (ΔS<sup>o</sup>) readings that are positive indicate that the system’s randomness increased during the adsorption process, reaching 119 J.mol<sup>−1</sup>K<sup>−1</sup>, and with rising temperatures, the negative of ΔG<sup>o</sup> rise. The effectiveness of the recommended adsorbent was evaluated by filtering wastewater samples in a laboratory environment. It is hypothesized that V-MOF and MP will interact by pore filling, π-π interaction, H-bonding, electrostatic contact, and other possible methods. Considering the specifics of this interaction in great detail is essential to comprehending the nature of adsorption and effectively constructing the adsorbent for use in real-world applications. Water filtering and the treatment of industrial effluents were made simple and effective by the use of V-MOF adsorbent technology. The results indicated that 383.6 mg/g was the maximal adsorption capacity at pH = 6. To evaluate the renewal of the adsorbent, more tests were carried out, and the outcomes showed that the renewal continued even after more than six cycles. The stability of the adsorbent during regeneration was confirmed by using XRD and FT-IR. The Box Behnken design (BBD) was then employed to optimize the adsorption outcomes.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101949"},"PeriodicalIF":5.8,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel and reusable magnetic MOF nanocomposite coupled ionic liquid-promoted efficient chemical fixation of CO2 into α-alkylidene cyclic carbonates 新型可重复使用的磁性 MOF 纳米复合材料耦合离子液体促进二氧化碳高效化学固定为 α-亚烷基环碳酸盐
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-12 DOI: 10.1016/j.jscs.2024.101950
Yu Lin Hu, Yan Hui Lei, Yu Tao Zhang
Carbon dioxide as a C1 building block to synthesize α-alkylidene cyclic carbonates is an environmental and sustainable approach. In this work, we designed and synthesized a type of multifunctional magnetic MOF nanocomposite catalysts, which could realize the carboxylic cyclization of CO2 and propargylic alcohols into α-alkylidene cyclic carbonates under solvent-free conditions. Among all the prepared nanocomposites, the MnFe2O4@SiO2@Cu-MOF nanocomposite is the best in catalytic activity combined with the tetrabutylphosphonium acetate ([Bu4P]OAc) ionic liquid cocatalyst. The catalytic system MnFe2O4@SiO2@Cu-MOF/[Bu4P]OAc displayed excellent performance in catalyzing the carboxylic cyclization of CO2 and different propargylic alcohols, and a series of α-alkylidene cyclic carbonates were obtained in high to excellent yields (88 ∼ 98 %) under mild reaction conditions (0.2 MPa, 35 °C). In addition, the two-component catalytic system had high stability and reusability, and can be easily separated and reused up to six consecutive cycles without considerable decrease in catalytic activity. Moreover, using the ionic liquid [Bu4P]OAc as the cocatalyst, the nanocomposite had good substrate adaptability for the catalytic carboxylic cyclization, which opens interesting prospects for the development of new magnetic MOF nanocomposites as efficient heterogeneous catalysts for the chemical transformation of CO2 into value-added chemicals.
以二氧化碳为C1构筑基块合成α-亚烷基环碳酸盐是一种环保且可持续的方法。本研究设计并合成了一种多功能磁性 MOF 纳米复合催化剂,可在无溶剂条件下实现二氧化碳与丙炔醇的羧基环化反应生成α-亚烷基环碳酸盐。在所有制备的纳米复合材料中,MnFe2O4@SiO2@Cu-MOF 纳米复合材料与四丁基醋酸鏻([Bu4P]OAc)离子液体催化剂结合的催化活性最好。MnFe2O4@SiO2@Cu-MOF/[Bu4P]OAc 催化体系在催化 CO2 和不同丙炔醇的羧基环化反应中表现出优异的性能,在温和的反应条件(0.2 兆帕,35 °C)下,以高至优异的收率(88 ∼ 98 %)获得了一系列α-亚烷基环碳酸盐。此外,该双组分催化体系具有很高的稳定性和重复使用性,可轻松分离并重复使用长达六个连续循环,而不会显著降低催化活性。此外,以离子液体[Bu4P]OAc 为助催化剂,该纳米复合材料对催化羧基环化具有良好的底物适应性,这为开发新型磁性 MOF 纳米复合材料作为将 CO2 化学转化为高附加值化学品的高效异相催化剂开辟了有趣的前景。
{"title":"Novel and reusable magnetic MOF nanocomposite coupled ionic liquid-promoted efficient chemical fixation of CO2 into α-alkylidene cyclic carbonates","authors":"Yu Lin Hu,&nbsp;Yan Hui Lei,&nbsp;Yu Tao Zhang","doi":"10.1016/j.jscs.2024.101950","DOIUrl":"10.1016/j.jscs.2024.101950","url":null,"abstract":"<div><div>Carbon dioxide as a C1 building block to synthesize α-alkylidene cyclic carbonates is an environmental and sustainable approach. In this work, we designed and synthesized a type of multifunctional magnetic MOF nanocomposite catalysts, which could realize the carboxylic cyclization of CO<sub>2</sub> and propargylic alcohols into α-alkylidene cyclic carbonates under solvent-free conditions. Among all the prepared nanocomposites, the MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@Cu-MOF nanocomposite is the best in catalytic activity combined with the tetrabutylphosphonium acetate ([Bu<sub>4</sub>P]OAc) ionic liquid cocatalyst. The catalytic system MnFe<sub>2</sub>O<sub>4</sub>@SiO<sub>2</sub>@Cu-MOF/[Bu<sub>4</sub>P]OAc displayed excellent performance in catalyzing the carboxylic cyclization of CO<sub>2</sub> and different propargylic alcohols, and a series of α-alkylidene cyclic carbonates were obtained in high to excellent yields (88 ∼ 98 %) under mild reaction conditions (0.2 MPa, 35 °C). In addition, the two-component catalytic system had high stability and reusability, and can be easily separated and reused up to six consecutive cycles without considerable decrease in catalytic activity. Moreover, using the ionic liquid [Bu<sub>4</sub>P]OAc as the cocatalyst, the nanocomposite had good substrate adaptability for the catalytic carboxylic cyclization, which opens interesting prospects for the development of new magnetic MOF nanocomposites as efficient heterogeneous catalysts for the chemical transformation of CO<sub>2</sub> into value-added chemicals.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101950"},"PeriodicalIF":5.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continuous processing of JP-10 production: Hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene using a novel bimetal catalyst of Ba/Se supported on TiO2/SO4 连续加工生产 JP-10:使用新型 TiO2/SO4 支承钡/硒双金属催化剂将内向四氢双环戊二烯加氢异构化为外向四氢双环戊二烯
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-12 DOI: 10.1016/j.jscs.2024.101951
P. Jayapradha , P. Tamizhdurai , C. Kavitha , V.L. Mangesh , Ashma Abubakker , S. Jayakumar , P. Saravanan , Krishna Kumar Yadav , Maha Awjan Alreshidi , Sultan Alshehery , Haifa A. Alqhtani , May Bin-Jumah
High-energy-density liquid fuels can be utilized as an energetic supplement to conventional fuels and are essential for volume-limited aerospace vehicles to boost payload and flying range. JP-10 has attracted much attention because of its high density, flash point, high volumetric heat, and low freezing point. Here we report the hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene (the main component of JP-10) was investigated over the TiO2/SO4 supported Ba(10 %)/Se(5–20 %) catalysts. This work aims to examine changes in continuous processing settings to maximize exo-THDCPD production, selectivity, and conversion. It was discovered that the synthesized TiO2/SO4/Ba(10 %)/Se(5–20 %) heterogeneous catalysts were novel, more effective, affordable, environmentally friendly, and simple to produce. The catalyst’s physicochemical characteristics were examined using FT-IR, BET, XRD, HR-SEM, HR-TEM, TGA and NH3-TPD. The produced TiO2/SO4/Ba(10 %)/Se(5–20 %) nano-catalysts have good catalytic activity and a wide range of active Lewis and Brønsted acid sites. Evaluation of the isomerization of endo-THDCPD to exo-THDCPD was conducted in a high-pressure fixed-bed continuous reactor operating at 200 °C, 20 bar of pressure, and 4.0mol/h of H2 flow rate. According to the investigations, the synthesized catalyst with a 15 % Se load performs exceptionally well, exhibiting 100 % conversion, 98.5 % selectivity, and 98.5 % yield at an H2 flow rate of 10 ml/min. The isomerized product is used in Jet Propellant-10, a high-density fuel. Under ideal circumstances, exo-THDCPD with a high degree of purity (>98 wt%) was produced without the need for any sort of separation technique.
高能量密度液体燃料可作为传统燃料的能量补充,对于体积受限的航空航天飞行器提高有效载荷和飞行距离至关重要。JP-10 因其高密度、高闪点、高容积热和低凝固点而备受关注。在此,我们报告了在 TiO2/SO4 支持的 Ba(10 %)/Se(5-20 %) 催化剂上将内四氢双环戊二烯加氢异构化成外四氢双环戊二烯(JP-10 的主要成分)的研究。这项工作旨在研究连续处理设置的变化,以最大限度地提高外-THDCPD 的产量、选择性和转化率。研究发现,合成的 TiO2/SO4/Ba(10 %)/Se(5-20 %)异相催化剂新颖、高效、经济、环保且生产简单。利用 FT-IR、BET、XRD、HR-SEM、HR-TEM、TGA 和 NH3-TPD 对催化剂的理化特性进行了研究。所制备的 TiO2/SO4/Ba(10 %)/Se(5-20 %) 纳米催化剂具有良好的催化活性和广泛的活性路易斯酸和布氏酸位点。在 200 °C、20 巴压力和 4.0mol/h H2 流速下运行的高压固定床连续反应器中,对内-THDCPD 异构化成外-THDCPD 进行了评估。研究结果表明,合成的含 15% Se 的催化剂性能优异,在 10 ml/min 的 H2 流速下,转化率达 100%,选择性达 98.5%,产率达 98.5%。异构化产品用于喷气推进剂-10(一种高密度燃料)。在理想情况下,无需任何分离技术就能生产出高纯度(98 wt%)的外-THDCPD。
{"title":"Continuous processing of JP-10 production: Hydroisomerization of endo-tetrahydrodicyclopentadiene to exo-tetrahydrodicyclopentadiene using a novel bimetal catalyst of Ba/Se supported on TiO2/SO4","authors":"P. Jayapradha ,&nbsp;P. Tamizhdurai ,&nbsp;C. Kavitha ,&nbsp;V.L. Mangesh ,&nbsp;Ashma Abubakker ,&nbsp;S. Jayakumar ,&nbsp;P. Saravanan ,&nbsp;Krishna Kumar Yadav ,&nbsp;Maha Awjan Alreshidi ,&nbsp;Sultan Alshehery ,&nbsp;Haifa A. Alqhtani ,&nbsp;May Bin-Jumah","doi":"10.1016/j.jscs.2024.101951","DOIUrl":"10.1016/j.jscs.2024.101951","url":null,"abstract":"<div><div>High-energy-density liquid fuels can be utilized as an energetic supplement to conventional fuels and are essential for volume-limited aerospace vehicles to boost payload and flying range. JP-10 has attracted much attention because of its high density, flash point, high volumetric heat, and low freezing point. Here we report the hydroisomerization of <em>endo</em>-tetrahydrodicyclopentadiene to <em>exo</em>-tetrahydrodicyclopentadiene (the main component of JP-10) was investigated over the TiO<sub>2</sub>/SO<sub>4</sub> supported Ba(10 %)/Se(5–20 %) catalysts. This work aims to examine changes in continuous processing settings to maximize <em>exo</em>-THDCPD production, selectivity, and conversion. It was discovered that the synthesized TiO<sub>2</sub>/SO<sub>4</sub>/Ba(10 %)/Se(5–20 %) heterogeneous catalysts were novel, more effective, affordable, environmentally friendly, and simple to produce. The catalyst’s physicochemical characteristics were examined using FT-IR, BET, XRD, HR-SEM, HR-TEM, TGA and NH<sub>3</sub>-TPD. The produced TiO<sub>2</sub>/SO<sub>4</sub>/Ba(10 %)/Se(5–20 %) nano-catalysts have good catalytic activity and a wide range of active Lewis and Brønsted acid sites. Evaluation of the isomerization of <em>endo</em>-THDCPD to <em>exo</em>-THDCPD was conducted in a high-pressure fixed-bed continuous reactor operating at 200 °C, 20 bar of pressure, and 4.0mol/h of H<sub>2</sub> flow rate. According to the investigations, the synthesized catalyst with a 15 % Se load performs exceptionally well, exhibiting 100 % conversion, 98.5 % selectivity, and 98.5 % yield at an H<sub>2</sub> flow rate of 10 ml/min. The isomerized product is used in Jet Propellant-10, a high-density fuel. Under ideal circumstances, <em>exo</em>-THDCPD with a high degree of purity (&gt;98 wt%) was produced without the need for any sort of separation technique.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101951"},"PeriodicalIF":5.8,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced thermal stability photophysical properties of photoselective PMMA/ITO nanohybrid films for greenhouse cooling in hot climates 增强光选择性 PMMA/ITO 纳米杂化薄膜的热稳定性和光物理性能,用于炎热气候下的温室降温
IF 5.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2024-10-05 DOI: 10.1016/j.jscs.2024.101945
Mohammed Alyami , Samah El-Bashir
The current research proposed innovative photoselective greenhouse cooling films made from PMMA/ITO nanohybrids, incorporating varying concentrations of Indium tin oxide nanocrystals (ITO NCs) and the fluorescent organic dye Lumogen F Red300, utilizing the solvent casting method. The morphology and structure were examined using transmission electron microscopy (TEM) and X-ray diffraction (XRD), demonstrating good homogeneity and amorphous nature. The impact of different ITO NC concentrations on physical properties was examined through differential scanning calorimetry (DSC), optical absorption, transmission, reflection, fluorescence, and Fourier transform infrared (FT-IR) spectroscopy. Integrating ITO NCs into the PMMA matrix showed enhanced thermal insulation capabilities of PMMA films while maintaining their transparency to photosynthetically active radiation (PAR). Maintaining this balance is crucial because it enables the films to selectively filter and reflect infrared radiation leading to lower greenhouse temperatures while still allowing the essential light needed for plant growth to pass through. This research is particularly significant for Sustainable Development Goals (SDGs) 2 and 13, especially in hot, water-scarce regions, as it protects plants from thermal stress, promotes growth, and supports food security in developing countries.
目前的研究提出了创新的光电选择性温室冷却薄膜,该薄膜由 PMMA/ITO 纳米杂化物制成,其中含有不同浓度的氧化铟锡纳米晶体(ITO NCs)和荧光有机染料 Lumogen F Red300,并采用了溶剂浇铸法。利用透射电子显微镜(TEM)和 X 射线衍射(XRD)对其形态和结构进行了检测,结果表明其具有良好的均匀性和无定形性。通过差示扫描量热法(DSC)、光吸收、透射、反射、荧光和傅立叶变换红外(FT-IR)光谱,研究了不同浓度的 ITO NC 对物理性质的影响。将 ITO NCs 集成到 PMMA 基体中可增强 PMMA 薄膜的隔热能力,同时保持其对光合有效辐射 (PAR) 的透明度。保持这种平衡至关重要,因为它能使薄膜有选择性地过滤和反射红外线辐射,从而降低温室温度,同时仍允许植物生长所需的基本光通过。这项研究对于可持续发展目标(SDGs)2 和 13 尤为重要,尤其是在炎热缺水地区,因为它可以保护植物免受热应力影响,促进生长,并为发展中国家的粮食安全提供支持。
{"title":"Enhanced thermal stability photophysical properties of photoselective PMMA/ITO nanohybrid films for greenhouse cooling in hot climates","authors":"Mohammed Alyami ,&nbsp;Samah El-Bashir","doi":"10.1016/j.jscs.2024.101945","DOIUrl":"10.1016/j.jscs.2024.101945","url":null,"abstract":"<div><div>The current research proposed innovative photoselective greenhouse cooling films made from PMMA/ITO nanohybrids, incorporating varying concentrations of Indium tin oxide nanocrystals (ITO NCs) and the fluorescent organic dye Lumogen F Red300, utilizing the solvent casting method. The morphology and structure were examined using transmission electron microscopy (TEM) and X-ray diffraction (XRD), demonstrating good homogeneity and amorphous nature. The impact of different ITO NC concentrations on physical properties was examined through differential scanning calorimetry (DSC), optical absorption, transmission, reflection, fluorescence, and Fourier transform infrared (FT-IR) spectroscopy. Integrating ITO NCs into the PMMA matrix showed enhanced thermal insulation capabilities of PMMA films while maintaining their transparency to photosynthetically active radiation (PAR). Maintaining this balance is crucial because it enables the films to selectively filter and reflect infrared radiation leading to lower greenhouse temperatures while still allowing the essential light needed for plant growth to pass through. This research is particularly significant for Sustainable Development Goals (SDGs) 2 and 13, especially in hot, water-scarce regions, as it protects plants from thermal stress, promotes growth, and supports food security in developing countries.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101945"},"PeriodicalIF":5.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142421993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Saudi Chemical Society
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1