{"title":"Advances in genomic toxicology: In vitro developmental toxicity test based on signal network disruption dynamics","authors":"","doi":"10.1016/j.cotox.2024.100489","DOIUrl":null,"url":null,"abstract":"<div><p>Developmental toxicity outcomes in humans and animals often exhibit variability; hence, the demand for predictive non-animal alternatives, particularly human cell-based models, are increasing. Despite advancements in genomic toxicology, which have facilitated the identification of toxicity mechanisms and potential biomarkers, existing transcriptome analysis-based methods have yet to yield highly predictive <em>in vitro</em> developmental toxicity assays. One possible reason is that assays at a single time point could not capture the entire dynamic signal network during developmental processes. This article addresses the challenges in comprehensive gene expression analysis and introduces novel <em>in vitro</em> developmental toxicity assays focused on the time-dependent dynamics of signaling pathway responses crucial to human development.</p></div>","PeriodicalId":93968,"journal":{"name":"Current opinion in toxicology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468202024000317/pdfft?md5=24008ba91be5c75a73de9c26ba156ac6&pid=1-s2.0-S2468202024000317-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468202024000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Developmental toxicity outcomes in humans and animals often exhibit variability; hence, the demand for predictive non-animal alternatives, particularly human cell-based models, are increasing. Despite advancements in genomic toxicology, which have facilitated the identification of toxicity mechanisms and potential biomarkers, existing transcriptome analysis-based methods have yet to yield highly predictive in vitro developmental toxicity assays. One possible reason is that assays at a single time point could not capture the entire dynamic signal network during developmental processes. This article addresses the challenges in comprehensive gene expression analysis and introduces novel in vitro developmental toxicity assays focused on the time-dependent dynamics of signaling pathway responses crucial to human development.