Enhancing the pure water splitting using carbon-iron oxide–carbon nitride (Fe2O3-C/CN) heterostructure

IF 5.3 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Arabian Journal of Chemistry Pub Date : 2024-07-11 DOI:10.1016/j.arabjc.2024.105902
{"title":"Enhancing the pure water splitting using carbon-iron oxide–carbon nitride (Fe2O3-C/CN) heterostructure","authors":"","doi":"10.1016/j.arabjc.2024.105902","DOIUrl":null,"url":null,"abstract":"<div><p>Highly efficient pure photocatalysts for water-splitting applications have long been plagued by structure imperfectness, narrowband light absorption, rapid charge recombination, and sluggish surface reaction kinetics. Herein we report a Z-scheme heterojunction photocatalyst made of Fe<sub>2</sub>O<sub>3</sub>, CN, and a conductive carbon layer (C) at the interface of the two materials (Fe<sub>2</sub>O<sub>3</sub>-C/CN). The structure has been characterized using a range of physicochemical and photo-electrochemical techniques. Compared to pristine Fe<sub>2</sub>O<sub>3</sub>, the Fe<sub>2</sub>O<sub>3</sub>-C/CN photocatalyst revealed superior photogenerated charge carriers, transport efficiency, and suppressed recombination process along with the conductive carbon layer acting as a mediator. The optimum composite of (5 wt% Fe<sub>2</sub>O<sub>3</sub>-C/CN) shows excellent activity towards pure water splitting, which reached 408 and 199 μmol/g.h for H<sub>2</sub> and O<sub>2</sub> evolution respectively, and a solar-to-hydrogen conversion efficiency of approximately 0.29 % when used for the pure water splitting process. Such a superior efficiency and production rate offer great potential for pure water splitting, and provide an alternative solution to future green energy production processes.</p></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1878535224003046/pdfft?md5=1401a6b19ddf45b1642d388baf5318ce&pid=1-s2.0-S1878535224003046-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878535224003046","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly efficient pure photocatalysts for water-splitting applications have long been plagued by structure imperfectness, narrowband light absorption, rapid charge recombination, and sluggish surface reaction kinetics. Herein we report a Z-scheme heterojunction photocatalyst made of Fe2O3, CN, and a conductive carbon layer (C) at the interface of the two materials (Fe2O3-C/CN). The structure has been characterized using a range of physicochemical and photo-electrochemical techniques. Compared to pristine Fe2O3, the Fe2O3-C/CN photocatalyst revealed superior photogenerated charge carriers, transport efficiency, and suppressed recombination process along with the conductive carbon layer acting as a mediator. The optimum composite of (5 wt% Fe2O3-C/CN) shows excellent activity towards pure water splitting, which reached 408 and 199 μmol/g.h for H2 and O2 evolution respectively, and a solar-to-hydrogen conversion efficiency of approximately 0.29 % when used for the pure water splitting process. Such a superior efficiency and production rate offer great potential for pure water splitting, and provide an alternative solution to future green energy production processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用碳-氧化铁-氮化碳(Fe2O3-C/CN)异质结构提高纯水分离能力
长期以来,用于水分离应用的高效纯光催化剂一直受到结构不完善、窄带光吸收、电荷快速重组和表面反应动力学迟缓等问题的困扰。在此,我们报告了一种 Z 型异质结光催化剂,由 Fe2O3、CN 和位于两种材料界面上的导电碳层(C)(Fe2O3-C/CN)组成。利用一系列物理化学和光电化学技术对该结构进行了表征。与原始的 Fe2O3 相比,Fe2O3-C/CN 光催化剂在光生电荷载流子、传输效率和抑制重组过程方面都更胜一筹,同时导电碳层还起到了中介作用。最佳复合材料(5 wt% Fe2O3-C/CN)在纯水分离方面表现出卓越的活性,H2 和 O2 的进化分别达到 408 μmol/g.h 和 199 μmol/g.h,用于纯水分离过程时,太阳能到氢气的转换效率约为 0.29%。如此优异的效率和生产率为纯水分离提供了巨大的潜力,并为未来的绿色能源生产工艺提供了替代解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Arabian Journal of Chemistry
Arabian Journal of Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
10.80
自引率
3.30%
发文量
763
审稿时长
63 days
期刊介绍: The Arabian Journal of Chemistry is an English language, peer-reviewed scholarly publication in the area of chemistry. The Arabian Journal of Chemistry publishes original papers, reviews and short reports on, but not limited to: inorganic, physical, organic, analytical and biochemistry. The Arabian Journal of Chemistry is issued by the Arab Union of Chemists and is published by King Saud University together with the Saudi Chemical Society in collaboration with Elsevier and is edited by an international group of eminent researchers.
期刊最新文献
Smartphone-enabled mesoporous silica nanotube chemosensors for quick and selective mercury detection in water and cosmetics Experimental study on inhibiting methane-coal dust explosion by APP-diatomite composite explosion suppressant in the pipe network Supercritical carbon dioxide chelation extraction of heavy metal ions from drilling fluid waste: Experiment and simulation Piperonal protects neuron-like and retinalpigment epithelial (RPE) cells from oxidative stress and apoptosis through inhibition of α-synuclein aggregation MonoTip C18 pipette tip solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry enables rapid and automated therapeutic drug monitoring of tyrosine kinase inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1