Pub Date : 2024-11-15DOI: 10.1016/j.arabjc.2024.106059
Ying Zhang , Xiao Tian , Jiale Han , Xiaojie Zhang , Yuanyuan Gao , Gerile Naren , Yanchun Yang
Searching for non-precious metal anode catalysts with high catalytic activity and low cost is essential for direct borohydride fuel cells (DBFC). The Ni-B alloys with crystalline states prepared by physical methods commonly exhibit high B content (NiB4, NiB6, etc.). This work first prepared four kinds of amorphous Ni-B alloy with low boron content by the chemical reduction method. The composition of Ni-B alloy is critical to its performance. Cu is doped in the Ni-B alloy in a suitable proportion to improve the catalytic activity further. The crystal structure, microstructure, and composition information of Ni-B and Ni-B-Cu alloys were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selective area electronic diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometer (ICP-OES) tests. The results show that the Ni-B and Ni-B-Cu alloys are amorphous nanoparticles with particle sizes of about 70 and 50 nm, respectively. The electrocatalytic oxidation BH4− performance of Ni-B and Ni-B-Cu was studied by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). It was shown that Ni-B and Ni-B-Cu alloy catalysts have good catalytic activity for BH4− oxidation reaction, and Cu doping improves the catalytic activity of the Ni-B alloy for borohydride oxidation reaction (BOR). In addition, it is found that the maximum power density (79.124 mW·cm−2) of the direct borohydride fuel cell using Ni-B-Cu/NF (NF: nickel foam) as an anode electrode is significantly higher than that of the Ni-B/NF electrode (21.063 mW·cm−2). The Ni-B and Ni-B-Cu alloys with low boron content can be used as potential anode catalyst materials for DBFC.
{"title":"Synthesis of Cu-doped Ni-B amorphous alloy catalyst and its catalytic performance for BH4- oxidation","authors":"Ying Zhang , Xiao Tian , Jiale Han , Xiaojie Zhang , Yuanyuan Gao , Gerile Naren , Yanchun Yang","doi":"10.1016/j.arabjc.2024.106059","DOIUrl":"10.1016/j.arabjc.2024.106059","url":null,"abstract":"<div><div>Searching for non-precious metal anode catalysts with high catalytic activity and low cost is essential for direct borohydride fuel cells (DBFC). The Ni-B alloys with crystalline states prepared by physical methods commonly exhibit high B content (NiB<sub>4</sub>, NiB<sub>6</sub>, etc.). This work first prepared four kinds of amorphous Ni-B alloy with low boron content by the chemical reduction method. The composition of Ni-B alloy is critical to its performance. Cu is doped in the Ni-B alloy in a suitable proportion to improve the catalytic activity further. The crystal structure, microstructure, and composition information of Ni-B and Ni-B-Cu alloys were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selective area electronic diffraction (SAED), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometer (ICP-OES) tests. The results show that the Ni-B and Ni-B-Cu alloys are amorphous nanoparticles with particle sizes of about 70 and 50 nm, respectively. The electrocatalytic oxidation BH<sub>4</sub><sup>−</sup> performance of Ni-B and Ni-B-Cu was studied by cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). It was shown that Ni-B and Ni-B-Cu alloy catalysts have good catalytic activity for BH<sub>4</sub><sup>−</sup> oxidation reaction, and Cu doping improves the catalytic activity of the Ni-B alloy for borohydride oxidation reaction (BOR). In addition, it is found that the maximum power density (79.124 mW·cm<sup>−2</sup>) of the direct borohydride fuel cell using Ni-B-Cu/NF (NF: nickel foam) as an anode electrode is significantly higher than that of the Ni-B/NF electrode (21.063 mW·cm<sup>−2</sup>). The Ni-B and Ni-B-Cu alloys with low boron content can be used as potential anode catalyst materials for DBFC.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106059"},"PeriodicalIF":5.3,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enhanced oil recovery (EOR) remains paramount for tapping into residual oil post primary and secondary recovery stages. While conventional methods hold their ground, the rise of chemical EOR, especially utilizing nanofluids, stands out due to its economic viability, enhanced recovery efficiency, and adaptability. The allure of nanofluid-enhanced oil recovery (N-EOR) has grown amongst researchers, albeit with underlying mechanisms that still harbor inconsistencies and ambiguities. This review meticulously examines the micro-mechanics of nanofluid interactions with heavy oil molecules, particles, and surfaces, the methodologies underpinning nanofluid-assisted EOR, multiphase displacement within pores and cores, and the fluid–solid coupling during such flows. Key findings show that nanofluids alter mineral wettability, adjust oil/water interfacial tension, shift structural disjoining pressure, and curtail viscosity. The prowess of N-EOR largely hinges on nanoparticle adsorption. Their affinity for mineral surfaces induces a shift towards water-wet states, while their interplay at oil/water boundaries can tweak interfacial tensions, fostering emulsification. One standout revelation is the adsorption of asphaltenes on nanoparticles, which mitigates asphaltene concentrations in heavy oil, thereby diminishing viscosity and amplifying oil extraction. Contrary to previous studies that merely spotlighted outcomes, our review delves deep into the complexities of nanoparticle adsorption, spotlighting the harmonious interplay between nanoparticle adsorption features and N-EOR operations. We unravel the intricacies of nanofluid behaviors during multiphase core displacement and provide a detailed overview of pertinent simulations. To encapsulate, this study demystifies potential N-EOR techniques and charts fresh research trajectories. Our revelations aim to enrich the comprehension of N-EOR phenomena, accentuating the pivotal role of nanofluids in multiphase core transitions and computational simulations. Furthermore, we highlight lingering challenges, directing the scientific community towards continued nanoparticle innovations and exploration. The novelty of this study is as follows: Nanofluids are mainly used in the third oil recovery process, and are not used in the first and second oil recovery processes. In addition, during the third oil recovery, some nanofluids may remain in the mine due to the sedimentation characteristics of nanomaterials. Currently, we are also committed to developing new processes to reduce the deposition of nanomaterials in the mine. At present, it is not clear how nanofluids enhance the oil recovery mechanism, and the oil recovery mechanism is relatively chaotic. In this article, we analyzed these mechanisms.
{"title":"Nanofluids application in enhanced oil recovery process-opportunities and challenges","authors":"Feifei Liang , Wenjuan Wang , Siyu Zhu , Yuting Hu, Ziyu Zhao, Yuxing Tan, Gaobo Yu, Jinjian Hou, Jiacheng Li","doi":"10.1016/j.arabjc.2024.106053","DOIUrl":"10.1016/j.arabjc.2024.106053","url":null,"abstract":"<div><div>Enhanced oil recovery (EOR) remains paramount for tapping into residual oil post primary and secondary recovery stages. While conventional methods hold their ground, the rise of chemical EOR, especially utilizing nanofluids, stands out due to its economic viability, enhanced recovery efficiency, and adaptability. The allure of nanofluid-enhanced oil recovery (N-EOR) has grown amongst researchers, albeit with underlying mechanisms that still harbor inconsistencies and ambiguities. This review meticulously examines the micro-mechanics of nanofluid interactions with heavy oil molecules, particles, and surfaces, the methodologies underpinning nanofluid-assisted EOR, multiphase displacement within pores and cores, and the fluid–solid coupling during such flows. Key findings show that nanofluids alter mineral wettability, adjust oil/water interfacial tension, shift structural disjoining pressure, and curtail viscosity. The prowess of N-EOR largely hinges on nanoparticle adsorption. Their affinity for mineral surfaces induces a shift towards water-wet states, while their interplay at oil/water boundaries can tweak interfacial tensions, fostering emulsification. One standout revelation is the adsorption of asphaltenes on nanoparticles, which mitigates asphaltene concentrations in heavy oil, thereby diminishing viscosity and amplifying oil extraction. Contrary to previous studies that merely spotlighted outcomes, our review delves deep into the complexities of nanoparticle adsorption, spotlighting the harmonious interplay between nanoparticle adsorption features and N-EOR operations. We unravel the intricacies of nanofluid behaviors during multiphase core displacement and provide a detailed overview of pertinent simulations. To encapsulate, this study demystifies potential N-EOR techniques and charts fresh research trajectories. Our revelations aim to enrich the comprehension of N-EOR phenomena, accentuating the pivotal role of nanofluids in multiphase core transitions and computational simulations. Furthermore, we highlight lingering challenges, directing the scientific community towards continued nanoparticle innovations and exploration. The novelty of this study is as follows: Nanofluids are mainly used in the third oil recovery process, and are not used in the first and second oil recovery processes. In addition, during the third oil recovery, some nanofluids may remain in the mine due to the sedimentation characteristics of nanomaterials. Currently, we are also committed to developing new processes to reduce the deposition of nanomaterials in the mine. At present, it is not clear how nanofluids enhance the oil recovery mechanism, and the oil recovery mechanism is relatively chaotic. In this article, we analyzed these mechanisms.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106053"},"PeriodicalIF":5.3,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.arabjc.2024.106058
Qing Shen , Luping Zhang , Yuan Zhao , Xiaobing Han , Jie Gao , Yuesheng Li , Xiaoming Zhu , Tian Liang , Tao Chen
The Ag nanoparticles demonstrate potent bacteria eradication capabilities; however, their tendency to aggregate in aqueous solutions compromises the antibacterial efficacy. Furthermore, the Ag nanoparticles employed in sewage treatment are challenging to recycle, resulting in environmental pollution and resource wastage. Herein, the Ag-core Fe3O4-shell structured particles (Ag@Fe3O4) are synthesized by leveraging the reduction potential difference between Ag+/Ag0 and Fe3+/Fe2+ through a one-step polyol reduction process. The Fe3O4 shell in the Ag@Fe3O4 composite not only effectively inhibits the agglomeration of Ag, but also enhances the penetration capability of the composite into biofilms, thereby enabling Ag@Fe3O4 to possess remarkable antibacterial efficacy against Escherichia coli (E. coli). The Ag@Fe3O4 demonstrates nearly 100 % inhibition of E. coli at a concentration of 0.24 mg mL−1 (with an Ag content of 0.042 mg mL−1) while still maintaining antibacterial effectiveness of 74.6 % even after undergoing reutilization for 10 cycles. Meanwhile, due to the excellent electron conductivity of Ag and the effective adsorption capability of Fe3O4 shell towards organic dyes, Ag@Fe3O4 facilitates rapid electron transfer to organic dyes and further lead to their reduction and degradation in the presence of NaBH4. The Ag@Fe3O4 can catalytically degrade various organic dyes (including Rhodamine B, Rhodamine 6G, and Methylene blue) within only 15 min, while achieving an impressive degradation efficiency exceeding 90.9 % after 6 cycles of reutilization. The cost-effectiveness (approximately $0.17 per gram), facile magnetic recovery, along with the superior antibacterial and dye-degradation performance showcase the significant potential of Ag@Fe3O4 for medical applications and sewage treatment.
{"title":"Magnetoplasmonic core–shell structured Ag@Fe3O4 particles synthesized via polyol reduction process rendering dual-functionality for bacteria ablation and dyes degradation","authors":"Qing Shen , Luping Zhang , Yuan Zhao , Xiaobing Han , Jie Gao , Yuesheng Li , Xiaoming Zhu , Tian Liang , Tao Chen","doi":"10.1016/j.arabjc.2024.106058","DOIUrl":"10.1016/j.arabjc.2024.106058","url":null,"abstract":"<div><div>The Ag nanoparticles demonstrate potent bacteria eradication capabilities; however, their tendency to aggregate in aqueous solutions compromises the antibacterial efficacy. Furthermore, the Ag nanoparticles employed in sewage treatment are challenging to recycle, resulting in environmental pollution and resource wastage. Herein, the Ag-core Fe<sub>3</sub>O<sub>4</sub>-shell structured particles (Ag@Fe<sub>3</sub>O<sub>4</sub>) are synthesized by leveraging the reduction potential difference between Ag<sup>+</sup>/Ag<sup>0</sup> and Fe<sup>3+</sup>/Fe<sup>2+</sup> through a one-step polyol reduction process. The Fe<sub>3</sub>O<sub>4</sub> shell in the Ag@Fe<sub>3</sub>O<sub>4</sub> composite not only effectively inhibits the agglomeration of Ag, but also enhances the penetration capability of the composite into biofilms, thereby enabling Ag@Fe<sub>3</sub>O<sub>4</sub> to possess remarkable antibacterial efficacy against Escherichia coli (<em>E. coli</em>). The Ag@Fe<sub>3</sub>O<sub>4</sub> demonstrates nearly 100 % inhibition of <em>E. coli</em> at a concentration of 0.24 mg mL<sup>−1</sup> (with an Ag content of 0.042 mg mL<sup>−1</sup>) while still maintaining antibacterial effectiveness of 74.6 % even after undergoing reutilization for 10 cycles. Meanwhile, due to the excellent electron conductivity of Ag and the effective adsorption capability of Fe<sub>3</sub>O<sub>4</sub> shell towards organic dyes, Ag@Fe<sub>3</sub>O<sub>4</sub> facilitates rapid electron transfer to organic dyes and further lead to their reduction and degradation in the presence of NaBH<sub>4</sub>. The Ag@Fe<sub>3</sub>O<sub>4</sub> can catalytically degrade various organic dyes (including Rhodamine B, Rhodamine 6G, and Methylene blue) within only 15 min, while achieving an impressive degradation efficiency exceeding 90.9 % after 6 cycles of reutilization. The cost-effectiveness (approximately $0.17 per gram), facile magnetic recovery, along with the superior antibacterial and dye-degradation performance showcase the significant potential of Ag@Fe<sub>3</sub>O<sub>4</sub> for medical applications and sewage treatment.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106058"},"PeriodicalIF":5.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-09DOI: 10.1016/j.arabjc.2024.106041
Qinhai Xu , Kang Li , Peng Wang
The reaction mechanism of p-hydroxystyryl-substituted BODIPY (BOH) with two oxidative cations, namely ABTS•+ and Fe3+, was investigated in a water–ethanol mixed solution and in liposome suspensions, respectively, using different spectroscopic methods. In solution, the oxidation of BOH (with orange fluorescence) by the two cations occurred at the ethylene group (CC) locating between the dipyrrole and phenol groups and resulted in conjugation-truncated products exhibiting characteristic green fluorescence emission. In heterogeneous small unilamellar vesicles (SUV), water soluble ABTS•+ was evidenced to oxidize BOH embedded in the lipid bilayers of SUV, while Fe3+ did not. The lack of reaction between Fe3+ and BOH was attributed to the complexation between Fe3+ and the phenolic hydroxyl group of BOH on the surface of the SUV. The reaction kinetics results indicated that, in homogeneous solution, the oxidation rate of Fe3+ was three orders of magnitude slower than that of ABTS•+ for BOH. The location and orientation of BOH within the SUV were discussed based on the reaction phenomena. BOH could be as a good antioxidant fluorescent prober for ABTS•+ detection with a detection limit of 1.5 * 10−7 M and a linear rang of 0–4.93 μM. What’s more, the amphiphilic BOH dispersed in the round GUV (BOH + GUV) could show the bright red fluorescence. This research suggests the significant potential of BOH as an antioxidant fluorescent probe for in situ bioimaging.
采用不同的光谱方法,研究了对羟基苯乙烯基取代的 BODIPY(BOH)分别在水-乙醇混合溶液和脂质体悬浮液中与 ABTS-+ 和 Fe3+ 两种氧化阳离子的反应机理。在溶液中,这两种阳离子对 BOH(具有橙色荧光)的氧化作用发生在位于二吡咯基团和苯酚基团之间的乙烯基团(CC)上,并导致共轭截断产物显示出特有的绿色荧光发射。在异质小型单拉米尔囊泡中,水溶性 ABTS-+ 被证明能氧化嵌入 SUV 脂质双分子层中的 BOH,而 Fe3+ 却不能。Fe3+ 与 BOH 不发生反应的原因是 Fe3+ 与 BOH 表面的酚羟基发生了络合反应。反应动力学结果表明,在均相溶液中,Fe3+ 对 BOH 的氧化速率比 ABTS-+ 慢三个数量级。根据反应现象讨论了 BOH 在 SUV 中的位置和取向。BOH 可作为一种良好的抗氧化荧光促进剂用于 ABTS-+ 的检测,其检测限为 1.5 * 10-7 M,线性范围为 0-4.93 μM。此外,分散在圆形 GUV(BOH + GUV)中的两亲性 BOH 还能发出明亮的红色荧光。这项研究表明,BOH 作为一种抗氧化荧光探针在原位生物成像方面具有巨大的潜力。
{"title":"The reaction mechanism of p-hydroxystyryl-substituted BODIPY with ABTS•+ and Fe3+ in solutions and in liposomes","authors":"Qinhai Xu , Kang Li , Peng Wang","doi":"10.1016/j.arabjc.2024.106041","DOIUrl":"10.1016/j.arabjc.2024.106041","url":null,"abstract":"<div><div>The reaction mechanism of <em>p</em>-hydroxystyryl-substituted BODIPY (BOH) with two oxidative cations, namely ABTS<sup>•+</sup> and Fe<sup>3+</sup>, was investigated in a water–ethanol mixed solution and in liposome suspensions, respectively, using different spectroscopic methods. In solution, the oxidation of BOH (with orange fluorescence) by the two cations occurred at the ethylene group (C<img>C) locating between the dipyrrole and phenol groups and resulted in conjugation-truncated products exhibiting characteristic green fluorescence emission. In heterogeneous small unilamellar vesicles (SUV), water soluble ABTS<sup>•+</sup> was evidenced to oxidize BOH embedded in the lipid bilayers of SUV, while Fe<sup>3+</sup> did not. The lack of reaction between Fe<sup>3+</sup> and BOH was attributed to the complexation between Fe<sup>3+</sup> and the phenolic hydroxyl group of BOH on the surface of the SUV. The reaction kinetics results indicated that, in homogeneous solution, the oxidation rate of Fe<sup>3+</sup> was three orders of magnitude slower than that of ABTS<sup>•+</sup> for BOH. The location and orientation of BOH within the SUV were discussed based on the reaction phenomena. BOH could be as a good antioxidant fluorescent prober for ABTS<sup>•+</sup> detection with a detection limit of 1.5 * 10<sup>−7</sup> M and a linear rang of 0–4.93 μM. What’s more, the amphiphilic BOH dispersed in the round GUV (BOH + GUV) could show the bright red fluorescence. This research suggests the significant potential of BOH as an antioxidant fluorescent probe for <em>in situ</em> bioimaging.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106041"},"PeriodicalIF":5.3,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<div><div>Bioassay-guided fractionation led to the isolation of three new spirocyclic terpenoid compounds from <em>Euphorbia amygdaloides</em> L<em>.</em>, named Zagrosin I–III. Their structures were identified by 1D and 2D NMR (<sup>1</sup>H NMR, <sup>13</sup>C NMR, DEPT 135, HMBC, and HSQC-TOCSY) and LC-MS-MS spectrometry. The cytotoxicity of the isolated spirocyclic terpenoids (Zagrosin I-III) was assessed against human breast cancer (MCF-7), human fibrosarcoma (HT1080), and normal human foreskin fibroblast cells with MTT assays (24, 48, and 72 h treatments). The FITC-Annexin V apoptosis flow cytometry assays and cell cycle analysis were performed for Zagrosin I–III.</div><div>These isolated compounds were identified as: (9)-8a-((benzoyloxy)methyl)-2-methoxy-4,9-dimethyltetrahydro-4H,5H-2,4a-methanobenzo[d] [1,3] dioxine-4-carboxylate (Zagrosin I), ((9)-4-hydroxy-2-methoxy-4,9-dimethyltetrahydro-4H,8aH-2,4a-methanobenzo[d] [1,3] dioxin-8a-yl) methyl benzoate (Zagrosin II), and (9)-2-methoxy-4,9-dimethyl-8a-(phenoxy methyl) tetrahydro-4H,5H-2,4a-methanobenzo[d][1,3]dioxin-4-yl 4-methylpentanoate (Zagrosin III).</div><div>The IC<sub>50</sub> of Zagrosin I on 48-h-treated MCF-7 was calculated as 1.5 μg/mL. Zagrosin II and III exhibited cytotoxicity on 48-h-treated MCF-7 with IC<sub>50</sub>s of 14.04 and 12.50 μg/mL, respectively. The IC<sub>50</sub> of Zagrosin I on human fibrosarcoma (HT1080) was 115.5 μg/mL, Zagrosin III, 16.81 μg/mL (48 h treatment), and Zagrosin II, 142.7 μg/mL (72 h treatment). Zagrosin I-III exhibited significant cytotoxicity against the MCF-7 cell line and human fibrosarcoma (HT1080), with the mechanism of early and late apoptosis affecting cells mostly in G0/G1 fallowed by S and G2 phases. MCF-7 had a higher rate of phosphatidyl serine exposure on the cell membrane than two other studied cells. The cytotoxicity on normal human foreskin fibroblasts was low. Zagrosin I-III can be considered an effective chemical backbone for anticancer drug development.</div><div>Abbreviations: 2D NMR: Two-Dimensional Nuclear Magnetic Resonance Spectroscopy; API: Atmospheric Pressure Ionization; DEPT: Distortionless Enhancement by Polarization Transfer; ELISA: Enzyme-Linked Immunosorbent assay; ERK: Extracellular signal-regulated kinase; ESI: Electrospray ionization; FBS: Fetal Bovine Serum; FITC: Fluorescein isothiocyante; fr: fraction; HMBC: Heteronuclear Multiple Bond Correlation; HPLC: High-Performance Liquid Chromatography; HSQC: Heteronuclear Single Quantum Coherence; HT1080: Human fibrosarcoma cell line; IC<sub>50</sub>: Half-maximal inhibitory concentration; MCF-7: Human breast cancer cell line; MHz: Megahertz; MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; NMR: Nuclear Magnetic Resonance; PBS: Phosphate Buffered Saline; PI: Propidium Iodide; ppm: Part Per Million; R<sub>f</sub>: Retention Factor; TLC: Thin-layer chromatography; TOCSY: Total Correlation Spectroscopy; VLC: Vacuum Liquid Chromatography.</div></di
{"title":"Three new spirocyclic terpenoids from Euphorbia amygdaloides exhibit cytotoxicity against cancerous cell lines through early and late apoptosis","authors":"Ardalan Pasdaran , Negar Azarpira , Mahdokht Hossein Aghdaie , Maryam Zare , Negin Sheidaie , Fatemeh Hajeb Fard , Azadeh Hamedi","doi":"10.1016/j.arabjc.2024.106049","DOIUrl":"10.1016/j.arabjc.2024.106049","url":null,"abstract":"<div><div>Bioassay-guided fractionation led to the isolation of three new spirocyclic terpenoid compounds from <em>Euphorbia amygdaloides</em> L<em>.</em>, named Zagrosin I–III. Their structures were identified by 1D and 2D NMR (<sup>1</sup>H NMR, <sup>13</sup>C NMR, DEPT 135, HMBC, and HSQC-TOCSY) and LC-MS-MS spectrometry. The cytotoxicity of the isolated spirocyclic terpenoids (Zagrosin I-III) was assessed against human breast cancer (MCF-7), human fibrosarcoma (HT1080), and normal human foreskin fibroblast cells with MTT assays (24, 48, and 72 h treatments). The FITC-Annexin V apoptosis flow cytometry assays and cell cycle analysis were performed for Zagrosin I–III.</div><div>These isolated compounds were identified as: (9)-8a-((benzoyloxy)methyl)-2-methoxy-4,9-dimethyltetrahydro-4H,5H-2,4a-methanobenzo[d] [1,3] dioxine-4-carboxylate (Zagrosin I), ((9)-4-hydroxy-2-methoxy-4,9-dimethyltetrahydro-4H,8aH-2,4a-methanobenzo[d] [1,3] dioxin-8a-yl) methyl benzoate (Zagrosin II), and (9)-2-methoxy-4,9-dimethyl-8a-(phenoxy methyl) tetrahydro-4H,5H-2,4a-methanobenzo[d][1,3]dioxin-4-yl 4-methylpentanoate (Zagrosin III).</div><div>The IC<sub>50</sub> of Zagrosin I on 48-h-treated MCF-7 was calculated as 1.5 μg/mL. Zagrosin II and III exhibited cytotoxicity on 48-h-treated MCF-7 with IC<sub>50</sub>s of 14.04 and 12.50 μg/mL, respectively. The IC<sub>50</sub> of Zagrosin I on human fibrosarcoma (HT1080) was 115.5 μg/mL, Zagrosin III, 16.81 μg/mL (48 h treatment), and Zagrosin II, 142.7 μg/mL (72 h treatment). Zagrosin I-III exhibited significant cytotoxicity against the MCF-7 cell line and human fibrosarcoma (HT1080), with the mechanism of early and late apoptosis affecting cells mostly in G0/G1 fallowed by S and G2 phases. MCF-7 had a higher rate of phosphatidyl serine exposure on the cell membrane than two other studied cells. The cytotoxicity on normal human foreskin fibroblasts was low. Zagrosin I-III can be considered an effective chemical backbone for anticancer drug development.</div><div>Abbreviations: 2D NMR: Two-Dimensional Nuclear Magnetic Resonance Spectroscopy; API: Atmospheric Pressure Ionization; DEPT: Distortionless Enhancement by Polarization Transfer; ELISA: Enzyme-Linked Immunosorbent assay; ERK: Extracellular signal-regulated kinase; ESI: Electrospray ionization; FBS: Fetal Bovine Serum; FITC: Fluorescein isothiocyante; fr: fraction; HMBC: Heteronuclear Multiple Bond Correlation; HPLC: High-Performance Liquid Chromatography; HSQC: Heteronuclear Single Quantum Coherence; HT1080: Human fibrosarcoma cell line; IC<sub>50</sub>: Half-maximal inhibitory concentration; MCF-7: Human breast cancer cell line; MHz: Megahertz; MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; NMR: Nuclear Magnetic Resonance; PBS: Phosphate Buffered Saline; PI: Propidium Iodide; ppm: Part Per Million; R<sub>f</sub>: Retention Factor; TLC: Thin-layer chromatography; TOCSY: Total Correlation Spectroscopy; VLC: Vacuum Liquid Chromatography.</div></di","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106049"},"PeriodicalIF":5.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1016/j.arabjc.2024.106048
Xiaoyu Zhang , Ruihu Zhang , Rui Li , Jiaxing Zhang , Yuefei Wang , Xin Chai , Yuefei Wang
Gardenia blue (GB), a natural active blue pigment, can be synthesized from iridoid glycosides and primary amino-containing compounds in vivo and in vitro. However, limited studies have reported about GB synthetic intermediates, leading to unawareness of the formation mechanism of GB. Here, we reported that GB could be detected in rats′ feces, whose formation was simulated by in vitro reaction of amino acid-rich feces extract from rats and genipin (GP) metabolized from geniposide (GE) through β-glucosidase. Firstly, we proved that 14 amino acids (AAs) detected in rats′ feces containing primary amino groups can react with GP to produce GB. Then, taking histidine (His) as example, we characterized the key intermediates during the reaction process, including basic units genihistidine A (GH-A) and dimers. As an active basic unit, GH-A underwent covalent polymerization to form dimer, which then self-assembled into supramolecular spherical nanoparticles through multiple noncovalent interactions, including hydrogen bonds, π-π interactions, and van der Waals interactions. Our study revealed the formation mechanism of GB and provided insights into the bioavailable form of GE from traditional Chinese medicine in vivo.
栀子蓝(GB)是一种天然活性蓝色色素,可在体内和体外由鸢尾甙和含初级氨基的化合物合成。然而,有关 GB 合成中间体的研究报道有限,导致人们对 GB 的形成机制缺乏了解。在此,我们报道了在大鼠粪便中可检测到国标,其形成是通过大鼠粪便提取物中富含的氨基酸与由基尼泊苷(GE)通过β-葡萄糖苷酶代谢而来的基尼泊苷(GP)的体外反应模拟的。首先,我们证明了在大鼠粪便中检测到的含有伯氨基的14种氨基酸(AAs)可与GP反应生成GB。然后,以组氨酸(His)为例,对反应过程中的关键中间产物进行了表征,包括基本单元基因组苷A(GH-A)和二聚体。作为一种活性基本单元,GH-A经过共价聚合形成二聚体,然后二聚体通过氢键、π-π相互作用和范德华相互作用等多种非共价作用自组装成超分子球形纳米颗粒。我们的研究揭示了 GB 的形成机理,并为了解中药 GE 在体内的生物可利用形式提供了见解。
{"title":"Elucidating the formation mechanism of gardenia blue pigment from amino acid and genipin","authors":"Xiaoyu Zhang , Ruihu Zhang , Rui Li , Jiaxing Zhang , Yuefei Wang , Xin Chai , Yuefei Wang","doi":"10.1016/j.arabjc.2024.106048","DOIUrl":"10.1016/j.arabjc.2024.106048","url":null,"abstract":"<div><div>Gardenia blue (GB), a natural active blue pigment, can be synthesized from iridoid glycosides and primary amino-containing compounds <em>in vivo</em> and <em>in vitro</em>. However, limited studies have reported about GB synthetic intermediates, leading to unawareness of the formation mechanism of GB. Here, we reported that GB could be detected in rats′ feces, whose formation was simulated by <em>in vitro</em> reaction of amino acid-rich feces extract from rats and genipin (GP) metabolized from geniposide (GE) through <em>β</em>-glucosidase. Firstly, we proved that 14 amino acids (AAs) detected in rats′ feces containing primary amino groups can react with GP to produce GB. Then, taking histidine (His) as example, we characterized the key intermediates during the reaction process, including basic units genihistidine A (GH-A) and dimers. As an active basic unit, GH-A underwent covalent polymerization to form dimer, which then self-assembled into supramolecular spherical nanoparticles through multiple noncovalent interactions, including hydrogen bonds, π-π interactions, and van der Waals interactions. Our study revealed the formation mechanism of GB and provided insights into the bioavailable form of GE from traditional Chinese medicine <em>in vivo</em>.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106048"},"PeriodicalIF":5.3,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.arabjc.2024.106051
Yonghang Zhang , Zhengjie Chen , Keqiang Xie , Xiuhua Chen , Xiaowei Chen , Yiyou Hu , Wenhui Ma
This study examines the acid-leaching and purification process of waste graphite in the production of Czochralski monocrystalline silicon. The optimal leaching conditions are identified as a liquid-to-solid ratio of 6, a leaching temperature of 70 °C, an acid concentration of 8 mol, and a leaching time of 60 min. The use of hydrofluoric acid, sulfuric acid, and nitric acid in the acid-leaching process increases the fixed carbon content of waste graphite from ∼94 % to ∼98.5 %. To address the low fixed carbon content that cannot be achieved through conventional acid-leaching, a method combining ultrasonic intensification with hydrofluoric and hydrochloric acid leaching is proposed and successfully implemented. Under ultrasonic enhancement conditions, the leaching effect is optimal at a temperature of 60 °C, acidity of 4 mol, and leaching time of 60 min. These results demonstrate that the introduction of ultrasound significantly strengthens the acid-leaching process. The method proposed in this study not only purifies waste graphite through acid-leaching but also elucidates the reaction behavior of various impurity elements during the leaching process. Overall, these findings provide a foundational basis for the recovery of waste graphite in the thermal field.
{"title":"Study on the thermal field material of FZ-Si crystal waste graphite purified by ultrasonic enhanced acid leaching","authors":"Yonghang Zhang , Zhengjie Chen , Keqiang Xie , Xiuhua Chen , Xiaowei Chen , Yiyou Hu , Wenhui Ma","doi":"10.1016/j.arabjc.2024.106051","DOIUrl":"10.1016/j.arabjc.2024.106051","url":null,"abstract":"<div><div>This study examines the acid-leaching and purification process of waste graphite in the production of Czochralski monocrystalline silicon. The optimal leaching conditions are identified as a liquid-to-solid ratio of 6, a leaching temperature of 70 °C, an acid concentration of 8 mol, and a leaching time of 60 min. The use of hydrofluoric acid, sulfuric acid, and nitric acid in the acid-leaching process increases the fixed carbon content of waste graphite from ∼94 % to ∼98.5 %. To address the low fixed carbon content that cannot be achieved through conventional acid-leaching, a method combining ultrasonic intensification with hydrofluoric and hydrochloric acid leaching is proposed and successfully implemented. Under ultrasonic enhancement conditions, the leaching effect is optimal at a temperature of 60 °C, acidity of 4 mol, and leaching time of 60 min. These results demonstrate that the introduction of ultrasound significantly strengthens the acid-leaching process. The method proposed in this study not only purifies waste graphite through acid-leaching but also elucidates the reaction behavior of various impurity elements during the leaching process. Overall, these findings provide a foundational basis for the recovery of waste graphite in the thermal field.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 12","pages":"Article 106051"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Photinia × fraseri is an important ornamental plant species widely cultivated in China with vibrant leaf color. However, there is limited information about the difference of phenolic constituents and bioactivity among P. fraseri leaves (PFL) with varied color, and the key factor which determines its color formation. Therefore, the aim of the present study was devoted to establishing the correlation among leaf color, anthocyanins and polyphenols profiles, together with antioxidant activity of PFL under varied light intensity. Results of color and pigment analysis on the four PFL groups indicated that total anthocyanins content was positively correlated with red color formation. Meanwhile, red leaves further exhibited a higher level of total anthocyanins (0.66 ± 0.02 mg/g), phenols (24.86 ± 1.33 mg/g), tannins (6.98 ± 0.23 mg/g), phenolic acids (73.60 ± 3.56 mg/g), condensed tannins (131.24 ± 5.51 mg/g), flavanols (3.42 ± 0.03 mg/g), flavonols (57.58 ± 0.19 mg/g), and antioxidant activities (0.17 ± 0.00 mmol/g for DPPH, 0.99 ± 0.06 mmol/g for ABTS, 1.73 ± 0.03 mmol/g for FRAP). Furthermore, a total of 11 phenolic compounds were identified from PFL, while caffeoylquinic acid derivatives and cyanidin-3-O-glucoside were the key phenolic compounds rich in red leaves. Principal component, hierarchical cluster, and correlation analysis indicated that high light intensity was the key factor responsible for the red color formation, as well as the high levels of total anthocyanins, phenolic acids and flavanols and antioxidant activities in the red leaves. Overall, the present study shall contribute to the exploration of the medicinal potential of the important horticultural plant P. fraseri and provide theoretical guidance for its further industrial development and application.
{"title":"Light intensity plays the key role in the regulation of leaf color, anthocyanin and polyphenol profiles, as well as antioxidant activity of Photinia × fraseri leaves","authors":"Chuang Deng, Xiang Liu, Fuchang Liao, Shuiqing Chen, Lingguang Yang, Peipei Yin","doi":"10.1016/j.arabjc.2024.106046","DOIUrl":"10.1016/j.arabjc.2024.106046","url":null,"abstract":"<div><div><em>Photinia × fraseri</em> is an important ornamental plant species widely cultivated in China with vibrant leaf color. However, there is limited information about the difference of phenolic constituents and bioactivity among <em>P. fraseri</em> leaves (PFL) with varied color, and the key factor which determines its color formation. Therefore, the aim of the present study was devoted to establishing the correlation among leaf color, anthocyanins and polyphenols profiles, together with antioxidant activity of PFL under varied light intensity. Results of color and pigment analysis on the four PFL groups indicated that total anthocyanins content was positively correlated with red color formation. Meanwhile, red leaves further exhibited a higher level of total anthocyanins (0.66 ± 0.02 mg/g), phenols (24.86 ± 1.33 mg/g), tannins (6.98 ± 0.23 mg/g), phenolic acids (73.60 ± 3.56 mg/g), condensed tannins (131.24 ± 5.51 mg/g), flavanols (3.42 ± 0.03 mg/g), flavonols (57.58 ± 0.19 mg/g), and antioxidant activities (0.17 ± 0.00 mmol/g for DPPH, 0.99 ± 0.06 mmol/g for ABTS, 1.73 ± 0.03 mmol/g for FRAP). Furthermore, a total of 11 phenolic compounds were identified from PFL, while caffeoylquinic acid derivatives and cyanidin-3-<em>O</em>-glucoside were the key phenolic compounds rich in red leaves. Principal component, hierarchical cluster, and correlation analysis indicated that high light intensity was the key factor responsible for the red color formation, as well as the high levels of total anthocyanins, phenolic acids and flavanols and antioxidant activities in the red leaves. Overall, the present study shall contribute to the exploration of the medicinal potential of the important horticultural plant <em>P. fraseri</em> and provide theoretical guidance for its further industrial development and application.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 12","pages":"Article 106046"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.arabjc.2024.106045
Yi Li , Gangmin Li , Cheng Peng , Xiaodong Shi , Fu Peng , Ailsa McGregor , Xiaofang Xie
Berberrubine is the well-known metabolite of berberine that can be isolated from plants. It has increasingly gained attention with its biological properties that are at times more potent than berberine. Compared with berberine, the structure of berberrubine has better lipid solubility and P-gp receptor affinity, so it has better bioavailability. Equally, greater biological activity has emerged in the treatment of disease. Currently, berberrubine is mainly derived by chemical synthesis, which not only pollutes the environment but also cannot meet the market demand. In this paper, the source, pharmacokinetics, biological properties, and toxicity of berberrubine were systematically reviewed by collecting and summarizing the current relevant literature over the past few decades. Furthermore, the underlying molecular mechanism and dose–effect relationship of berberrubine and the prodrug berberine in the treatment of related diseases are also discussed to broaden the application and development prospects of berberrubine as a novel drug. Notably, the clinical studies of berberrubine are quite insufficient. Further high-quality studies are required to firmly establish the clinical efficacy of berberrubine.
{"title":"Berberrubine, an Attractive derivative of berberine with multiple pharmacological activities","authors":"Yi Li , Gangmin Li , Cheng Peng , Xiaodong Shi , Fu Peng , Ailsa McGregor , Xiaofang Xie","doi":"10.1016/j.arabjc.2024.106045","DOIUrl":"10.1016/j.arabjc.2024.106045","url":null,"abstract":"<div><div>Berberrubine is the well-known metabolite of berberine that can be isolated from plants. It has increasingly gained attention with its biological properties that are at times more potent than berberine. Compared with berberine, the structure of berberrubine has better lipid solubility and P-gp receptor affinity, so it has better bioavailability. Equally, greater biological activity has emerged in the treatment of disease. Currently, berberrubine is mainly derived by chemical synthesis, which not only pollutes the environment but also cannot meet the market demand. In this paper, the source, pharmacokinetics, biological properties, and toxicity of berberrubine were systematically reviewed by collecting and summarizing the current relevant literature over the past few decades. Furthermore, the underlying molecular mechanism and dose–effect relationship of berberrubine and the prodrug berberine in the treatment of related diseases are also discussed to broaden the application and development prospects of berberrubine as a novel drug. Notably, the clinical studies of berberrubine are quite insufficient. Further high-quality studies are required to firmly establish the clinical efficacy of berberrubine.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106045"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142653289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1016/j.arabjc.2024.106044
Qian Li, Ting Wang, Chenyue Wang, Xiaoqin Ding
In this study, polysaccharides from Angelica dahurica Radix (ADR) were extracted by using ultrasonic-assisted deep eutectic solvent (DES) extraction method. The DES consist of choline chloride (HBA, hydrogen bonding acceptor) and 1, 4-butanediol (HBD, hydrogen bonding donor) with the molar ratio of 1:3 was proved as the best system for polysaccharides extraction. A Box-Behnken design with three factors and three levels was utilized to optimize ultrasonic power, extraction time and temperature for increased polysaccharides yield. The optimal extraction parameters were determined as follows: DES water content of 20 %, liquid–solid ratio of 10:1 mL/g, ultrasonic time of 21 min, temperature at 60 °C, and ultrasonic power of 435 W. These conditions yielded an extraction rate nearly matching the theoretical predicted value of the response surface model, surpassing the traditional hot water extraction method by 1.33 times and requiring less time. The antioxidant polysaccharides was assessed using DPPH, ABTS and Hydroxyl methods, which indicated that ADRP extracted by ultrasound assisted DES had excellent antioxidant capacity and showed a dose–response relationship with drug concentration. Structural analysis identified ADR polysaccharides as a heteropolysaccharide rich in sugar aldonic acids—namely, fucose, rhamnose, arabinose, galactose and glucose—with molar ratios of 0.47:1.99:17.61:64.76:15.17. The polysaccharides’ number-average molecular weight was determined to be 97.422 kDa, with a weight-average molecular weight of 245.678 kDa. Network pharmacology and molecular docking analysis suggest that the monosaccharides Rha and Ara could potentially interact with the proteins GSR and GSTA1, respectively, indicating that ADRP had good antioxidant potential and could be applied in multiple fields with promising development prospects in the future.
{"title":"Ultrasonic-assisted DES extraction optimization, characterization, antioxidant and in silico study of polysaccharides from Angelica dahurica Radix","authors":"Qian Li, Ting Wang, Chenyue Wang, Xiaoqin Ding","doi":"10.1016/j.arabjc.2024.106044","DOIUrl":"10.1016/j.arabjc.2024.106044","url":null,"abstract":"<div><div>In this study, polysaccharides from <em>Angelica dahurica</em> Radix (ADR) were extracted by using ultrasonic-assisted deep eutectic solvent (DES) extraction method. The DES consist of choline chloride (HBA, hydrogen bonding acceptor) and 1, 4-butanediol (HBD, hydrogen bonding donor) with the molar ratio of 1:3 was proved as the best system for polysaccharides extraction. A Box-Behnken design with three factors and three levels was utilized to optimize ultrasonic power, extraction time and temperature for increased polysaccharides yield. The optimal extraction parameters were determined as follows: DES water content of 20 %, liquid–solid ratio of 10:1 mL/g, ultrasonic time of 21 min, temperature at 60 °C, and ultrasonic power of 435 W. These conditions yielded an extraction rate nearly matching the theoretical predicted value of the response surface model, surpassing the traditional hot water extraction method by 1.33 times and requiring less time. The antioxidant polysaccharides was assessed using DPPH,<!--> <!-->ABTS and Hydroxyl methods, which indicated that ADRP extracted by ultrasound assisted DES had excellent antioxidant capacity and showed a dose–response relationship with drug concentration. Structural analysis identified ADR polysaccharides as a heteropolysaccharide rich in sugar aldonic acids—namely, fucose, rhamnose, arabinose, galactose and glucose—with molar ratios of 0.47:1.99:17.61:64.76:15.17. The polysaccharides’ number-average molecular weight was determined to be 97.422 kDa, with a weight-average molecular weight of 245.678 kDa. Network pharmacology and molecular docking analysis suggest that the monosaccharides Rha and Ara could potentially interact with the proteins GSR and GSTA1, respectively, indicating that ADRP had good antioxidant potential and could be applied in multiple fields with promising development prospects in the future.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"17 12","pages":"Article 106044"},"PeriodicalIF":5.3,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}