Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106079
Baoguo Yang , Fengcheng Jiang , Yinxin Zhao , Hongbin Li , Shengguang Zhang , Kanghui Liu
Zirconium-modified materials exhibit good adsorption performance, but their large-scale application is limited by the cost of carrier materials and the difficulty of solid–liquid separation of powder adsorbents. Therefore, in this study, we used low-cost gasification slag for zirconium oxide loading to avoid the aforementioned problems and successfully prepared a novel gasification slag–based zirconium-doped magnetic adsorbent material (GS-Z2M). GS-Z2M is a mesoporous adsorbent material with a large specific surface area (188 m2/g); it completely adsorbed phosphate with an initial concentration of 10 mg/L within 3 h. The rate-controlling step of phosphate removal using GS-Z2M was chemisorption. The Langmuir model proved more suitable for describing the adsorption of phosphate on GS-Z2M than the Freundlich and Temkin models, and the maximum phosphate adsorption capacity calculated using the Langmuir model was 26.02 mg/g. GS-Z2M showed good phosphate adsorption selectivity and reusability (can be recycled at least 5 times). GS-Z2M also showed good capacity for treating actual phosphate wastewater under dynamic flow conditions. The mechanism of phosphate adsorption on GS-Z2M mainly involved ligand exchange and inner-sphere complexation. The obtained results suggest that GS-Z2M is a promising adsorbent and vital for the development of phosphate adsorbents and recycling of gasification slag.
{"title":"Phosphate removal performance and mechanism of zirconium-doped magnetic gasification slag","authors":"Baoguo Yang , Fengcheng Jiang , Yinxin Zhao , Hongbin Li , Shengguang Zhang , Kanghui Liu","doi":"10.1016/j.arabjc.2024.106079","DOIUrl":"10.1016/j.arabjc.2024.106079","url":null,"abstract":"<div><div>Zirconium-modified materials exhibit good adsorption performance, but their large-scale application is limited by the cost of carrier materials and the difficulty of solid–liquid separation of powder adsorbents. Therefore, in this study, we used low-cost gasification slag for zirconium oxide loading to avoid the aforementioned problems and successfully prepared a novel gasification slag–based zirconium-doped magnetic adsorbent material (GS-Z2M). GS-Z2M is a mesoporous adsorbent material with a large specific surface area (188 m<sup>2</sup>/g); it completely adsorbed phosphate with an initial concentration of 10 mg/L within 3 h. The rate-controlling step of phosphate removal using GS-Z2M was chemisorption. The Langmuir model proved more suitable for describing the adsorption of phosphate on GS-Z2M than the Freundlich and Temkin models, and the maximum phosphate adsorption capacity calculated using the Langmuir model was 26.02 mg/g. GS-Z2M showed good phosphate adsorption selectivity and reusability (can be recycled at least 5 times). GS-Z2M also showed good capacity for treating actual phosphate wastewater under dynamic flow conditions. The mechanism of phosphate adsorption on GS-Z2M mainly involved ligand exchange and inner-sphere complexation. The obtained results suggest that GS-Z2M is a promising adsorbent and vital for the development of phosphate adsorbents and recycling of gasification slag.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106079"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106084
Xiaochun Zeng , Junran Shao , Dabo Pan , Siying Zeng , Zhenzhong Wang , Xinsheng Yao , Haibo Li , Wei Xiao , Yang Yu
Epimedium total flavonoid capsules (ETFCs), a traditional Chinese patent medicine derived from Epimedium brevicornu Maxim., have been used for centuries to treat primary osteoporosis and are associated with kidney yang deficiency symptoms. Based on the “kidney-brain axis” hypothesis, previous study demonstrated that ETFCs can improve the cognitive function of MCAO rats, and the mechanism may involve the inflammatory response. However, little is known about their therapeutic components and scientific connotations. This study systematically investigates the anti-neuroinflammatory material basis and the mechanisms of ETFCs, integrating UPLC-Q/TOF-MS and UPLC-TQ-MS for chemical profiling, quantitative analysis of key components in rats′ plasma and brain, along with network pharmacology and activity verification. As a result, 65 components were identified. Metabolite profiling showed a total of 130 xenobiotics, highlighting the extensive metabolic transformations. Pharmacokinetic studies showed that primary flavonoid glycosides were quickly absorbed, while secondary glycosides exhibited slower absorption and elimination. In brain tissue, both prototype glycosides and secondary glycosides reached their peak concentrations rapidly, with Tmax between 0.25–1 h, while the prototype glycosides were eliminated after 8 h and secondary glycosides exhibited a secondary peak at 6–8 h. A network pharmacology study revealed that prototypes in blood may play a therapeutic role through targets including AKR1B1, PDE5A, and PTGS2 (COX-2). The LPS-induced BV-2 cell model confirmed ETFCs′ constituents showed inhibitory activities on pro-inflammatory cytokine secretion, mRNA expressions of IL-6, TNF-α, COX-2, iNOS and could down-regulate the protein expressions of COX-2 and iNOS. This research lays the foundation for the further development and utilization of ETFCs.
{"title":"Quantitative profiling and mechanisms exploration of Epimedium total flavonoid capsules in neuroinflammation: An integrated study of pharmacokinetics, network pharmacology, and molecular pathways","authors":"Xiaochun Zeng , Junran Shao , Dabo Pan , Siying Zeng , Zhenzhong Wang , Xinsheng Yao , Haibo Li , Wei Xiao , Yang Yu","doi":"10.1016/j.arabjc.2024.106084","DOIUrl":"10.1016/j.arabjc.2024.106084","url":null,"abstract":"<div><div>Epimedium total flavonoid capsules (ETFCs), a traditional Chinese patent medicine derived from <em>Epimedium brevicornu</em> Maxim., have been used for centuries to treat primary osteoporosis and are associated with kidney yang deficiency symptoms. Based on the “kidney-brain axis” hypothesis, previous study demonstrated that ETFCs can improve the cognitive function of MCAO rats, and the mechanism may involve the inflammatory response. However, little is known about their therapeutic components and scientific connotations. This study systematically investigates the anti-neuroinflammatory material basis and the mechanisms of ETFCs, integrating UPLC-Q/TOF-MS and UPLC-TQ-MS for chemical profiling, quantitative analysis of key components in rats′ plasma and brain, along with network pharmacology and activity verification. As a result, 65 components were identified. Metabolite profiling showed a total of 130 xenobiotics, highlighting the extensive metabolic transformations. Pharmacokinetic studies showed that primary flavonoid glycosides were quickly absorbed, while secondary glycosides exhibited slower absorption and elimination. In brain tissue, both prototype glycosides and secondary glycosides reached their peak concentrations rapidly, with T<sub>max</sub> between 0.25–1 h, while the prototype glycosides were eliminated after 8 h and secondary glycosides exhibited a secondary peak at 6–8 h. A network pharmacology study revealed that prototypes in blood may play a therapeutic role through targets including AKR1B1, PDE5A, and PTGS2 (COX-2). The LPS-induced BV-2 cell model confirmed ETFCs′ constituents showed inhibitory activities on pro-inflammatory cytokine secretion, mRNA expressions of IL-6, TNF-α, COX-2, iNOS and could down-regulate the protein expressions of COX-2 and iNOS. This research lays the foundation for the further development and utilization of ETFCs.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106084"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106077
Mustafa Khan , Suxia Yan , Guochun Li , Junfeng Liu , Mohamed R. Ali , Yong Wang
This review explores recent advancements in using biomass-derived materials for alkali metal-sulfur and selenium batteries, which are rapidly evolving in the field of high-energy–density storage systems. At the core of our discussion is the utilization of biomass-derived carbon (BDCs), emphasizing its vital role in enhancing the performance of these batteries. We examine the applications of carbon derived from biomass as hosts, extending our exploration beyond lithium-sulfur (Li-S) batteries to include a broader range of alkali metal combinations with sulfur and selenium. We emphasize the rational design and strategic use of biomass-derived materials in addressing challenges such as polysulfide and polyselenide dissolution and slow redox kinetics. The review highlights how these carbon materials contribute to high energy density and long cycling lifespans in sulfur and selenium-based batteries, enhancing stability and efficiency. Concluding with a forward-looking perspective, it identifies the ongoing need for innovation in biomass-derived carbon applications to advance alkali metal-sulfur and selenium batteries’ capabilities.
{"title":"Recent progress in biomass-derived carbon for alkali metal-sulfur and selenium batteries","authors":"Mustafa Khan , Suxia Yan , Guochun Li , Junfeng Liu , Mohamed R. Ali , Yong Wang","doi":"10.1016/j.arabjc.2024.106077","DOIUrl":"10.1016/j.arabjc.2024.106077","url":null,"abstract":"<div><div>This review explores recent advancements in using biomass-derived materials for alkali metal-sulfur and selenium batteries, which are rapidly evolving in the field of high-energy–density storage systems. At the core of our discussion is the utilization of biomass-derived carbon (BDCs), emphasizing its vital role in enhancing the performance of these batteries. We examine the applications of carbon derived from biomass as hosts, extending our exploration beyond lithium-sulfur (Li-S) batteries to include a broader range of alkali metal combinations with sulfur and selenium. We emphasize the rational design and strategic use of biomass-derived materials in addressing challenges such as polysulfide and polyselenide dissolution and slow redox kinetics. The review highlights how these carbon materials contribute to high energy density and long cycling lifespans in sulfur and selenium-based batteries, enhancing stability and efficiency. Concluding with a forward-looking perspective, it identifies the ongoing need for innovation in biomass-derived carbon applications to advance alkali metal-sulfur and selenium batteries’ capabilities.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106077"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106085
Jie Zhang , Yuan Li , Ling Li , Jie-Lin Zhang , Li-Wen Zhong , Jia-Yi Zhang , Shi-Hong Zhong , Rui Gu
Gentiana lawrencei var. farreri (GLF) is one of the varieties of the Tibetan medicinal herb “Bang Jian”, known as “Longdanhua” have been employed in Tibetan medicine for the treatment of inflammatory-related diseases. However, the anti-inflammatory effect of its play on the pharmacodynamic material and anti-inflammatory mechanism are still unclear. Therefore, in this study, we proposed UPLC-Q-TOF/MS combined with network pharmacology, molecular docking and in vitro experimental validation to explore the material basis and potential mechanism of the anti-inflammatory effect of GLF. Firstly, 43 compounds of GLF were identified by UPLC-Q-TOF/MS. Next, the potential 6 core active components, 15 core targets and 5 key pathways of GLF for the treatment of inflammation were used to predicted by network pharmacology. Then, molecular docking was used to validate the binding ability of core chemical constituents and core targets of GLF, and the results showed that the 6 core chemical constituents could bind well to 15 core targets, among which isoorientin had the lowest binding energy to AKT1 (−10.5 kcal mol−1). Finally, the promising anti-inflammatory activity of the key component isoorientin was verified by the LPS-induced macrophage inflammation model in RAW264.7 mice. This study revealed the anti-inflammatory pharmacodynamic material basis and mechanism of GLF, which provide a theoretical basis for the development, utilization, and clinical application of GLF.
{"title":"Study on pharmacodynamic material basis and mechanism of anti-inflammatory effect of Tibetan medicine Gentiana lawrencei var. farreri based on UPLC-Q-TOF/MS combined with network pharmacology and molecular docking","authors":"Jie Zhang , Yuan Li , Ling Li , Jie-Lin Zhang , Li-Wen Zhong , Jia-Yi Zhang , Shi-Hong Zhong , Rui Gu","doi":"10.1016/j.arabjc.2024.106085","DOIUrl":"10.1016/j.arabjc.2024.106085","url":null,"abstract":"<div><div><em>Gentiana lawrencei</em> var. <em>farreri</em> (GLF) is one of the varieties of the Tibetan medicinal herb “Bang Jian”, known as “Longdanhua” have been employed in Tibetan medicine for the treatment of inflammatory-related diseases. However, the anti-inflammatory effect of its play on the pharmacodynamic material and anti-inflammatory mechanism are still unclear. Therefore, in this study, we proposed UPLC-Q-TOF/MS combined with network pharmacology, molecular docking and in vitro experimental validation to explore the material basis and potential mechanism of the anti-inflammatory effect of GLF. Firstly, 43 compounds of GLF were identified by UPLC-Q-TOF/MS. Next, the potential 6 core active components, 15 core targets and 5 key pathways of GLF for the treatment of inflammation were used to predicted by network pharmacology. Then, molecular docking was used to validate the binding ability of core chemical constituents and core targets of GLF, and the results showed that the 6 core chemical constituents could bind well to 15 core targets, among which isoorientin had the lowest binding energy to AKT1 (−10.5 kcal mol<sup>−1</sup>). Finally, the promising anti-inflammatory activity of the key component isoorientin was verified by the LPS-induced macrophage inflammation model in RAW264.7 mice. This study revealed the anti-inflammatory pharmacodynamic material basis and mechanism of GLF, which provide a theoretical basis for the development, utilization, and clinical application of GLF.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106085"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106076
Fengmin Wu , Qinlin Yuan , Jinlong Wang , Xiaowei Wang , Jie Luo , Yafei Guo , Hang Xu , Xuefeng Wei
In this study, the magnetic CoFe2O4 was fabricated and utilized as catalysts to activate peroxymonosulfate (PMS) for removal of dibenzothiophene (DBT) in model oil with the extraction-coupled catalytic combined with oxidation desulfurization system (ECODS). The prepared magnetic CoFe2O4 was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Vibrating Sample Magnetometer VSM etc. The results showed that the prepared magnetic CoFe2O4 with a large specific surface area and exhibited excellent magnetism, phase composition, crystallinity and uniform distribution of the elements. The sulfur removal of DBT in n-octane was 95 % in 60 min at 40 °C under the conditions: 6 mL of model oil (600 ppm), O/S = 3:1 and 125 mg of CoFe2O4 powder. The possible mechanism of desulfurization was proposed by GC–MS. In conclusion, CoFe2O4 magnetic nanoparticles function well in both desulfurization and catalysis for PMS.
{"title":"Oxidative desulfurization catalyzed by magnetically recoverable CoFe2O4 nano-particles","authors":"Fengmin Wu , Qinlin Yuan , Jinlong Wang , Xiaowei Wang , Jie Luo , Yafei Guo , Hang Xu , Xuefeng Wei","doi":"10.1016/j.arabjc.2024.106076","DOIUrl":"10.1016/j.arabjc.2024.106076","url":null,"abstract":"<div><div>In this study, the magnetic CoFe<sub>2</sub>O<sub>4</sub> was fabricated and utilized as catalysts to activate peroxymonosulfate (PMS) for removal of dibenzothiophene (DBT) in model oil with the extraction-coupled catalytic combined with oxidation desulfurization system (ECODS). The prepared magnetic CoFe<sub>2</sub>O<sub>4</sub> was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Vibrating Sample Magnetometer VSM etc. The results showed that the prepared magnetic CoFe<sub>2</sub>O<sub>4</sub> with a large specific surface area and exhibited excellent magnetism, phase composition, crystallinity and uniform distribution of the elements. The sulfur removal of DBT in n-octane was 95 % in 60 min at 40 °C under the conditions: 6 mL of model oil (600 ppm), O/S = 3:1 and 125 mg of CoFe<sub>2</sub>O<sub>4</sub> powder. The possible mechanism of desulfurization was proposed by GC–MS. In conclusion, CoFe<sub>2</sub>O<sub>4</sub> magnetic nanoparticles function well in both desulfurization and catalysis for PMS.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106076"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NQO1 is a FAD containing NAD(P)H-dependent oxidoreductase that catalyzes the reduction of quinones and related substrates, which plays an important role in the treatment of non-small cell lung cancer (NSCLC). Based on the indolequinone structure from 5-methoxy-2-methylindole, the indolequinone of NQO1 agonists was first coupled with amino-evodiamine derivatives by esterification reaction, and sixteen new compounds targeting NQO1 were developed. Among them, compounds 11b and 12d (IC50 = 2.72 or 3.66 µM, respectively) were showed better activity by cytotoxicity assay than the reference drug EVO (IC50 = 19.65 µM). Furthermore, the results of flow cytometry analysis showed that compounds 11b and 12d promoted apoptosis in A549 cells, blocked the cell cycle to the G2/M stage and caused a burst of reactive oxygen species. Western blotting experiments revealed that compounds 11b and 12d, after 24 h of treatment in A549 cells, downregulate the expression of Keap1 while upregulating the expression of Nrf2, NQO1, and HO-1. This suggests that compounds 11b and 12d increase cellular antioxidant capacity by regulating the Keap1/Nrf2/NQO1 antioxidant pathway. In vivo anti-tumor experiments showed that the reference drugs EVO (TGI = 15.94 %) and 5-Fu (TGI = 27.54 %) inhibited the proliferation of tumor tissue, while compound 11b could better inhibit the proliferation of tumor tissue (TGI = 39.13 %). In conclusion, our research results suggest that compounds 11b and 12d are potent agonism of the NQO1 signaling pathway and provide a potential opportunity to improve the treatment of NSCLC.
{"title":"Design, synthesis, and biological evaluation of evodiamine-indolequinone hybrids as novel NQO1 agonists against non-small cell lung cancer","authors":"BinBin Wei , Zheng Yang , Hui Guo, YuWei Wang, WenZhuo Chen, Jing Zhou, RuYi Jin, Zheng Wang, YuPing Tang","doi":"10.1016/j.arabjc.2024.106075","DOIUrl":"10.1016/j.arabjc.2024.106075","url":null,"abstract":"<div><div>NQO1 is a FAD containing NAD(P)H-dependent oxidoreductase that catalyzes the reduction of quinones and related substrates, which plays an important role in the treatment of non-small cell lung cancer (NSCLC). Based on the indolequinone structure from 5-methoxy-2-methylindole, the indolequinone of NQO1 agonists was first coupled with amino-evodiamine derivatives by esterification reaction, and sixteen new compounds targeting NQO1 were developed. Among them, compounds <strong>11b</strong> and <strong>12d</strong> (IC<sub>50</sub> = 2.72 or 3.66 µM, respectively) were showed better activity by cytotoxicity assay than the reference drug EVO (IC<sub>50</sub> = 19.65 µM). Furthermore, the results of flow cytometry analysis showed that compounds <strong>11b</strong> and <strong>12d</strong> promoted apoptosis in A549 cells, blocked the cell cycle to the G2/M stage and caused a burst of reactive oxygen species. Western blotting experiments revealed that compounds <strong>11b</strong> and <strong>12d</strong>, after 24 h of treatment in A549 cells, downregulate the expression of Keap1 while upregulating the expression of Nrf2, NQO1, and HO-1. This suggests that compounds <strong>11b</strong> and <strong>12d</strong> increase cellular antioxidant capacity by regulating the Keap1/Nrf2/NQO1 antioxidant pathway. In vivo anti-tumor experiments showed that the reference drugs EVO (TGI = 15.94 %) and 5-Fu (TGI = 27.54 %) inhibited the proliferation of tumor tissue, while compound <strong>11b</strong> could better inhibit the proliferation of tumor tissue (TGI = 39.13 %). In conclusion, our research results suggest that compounds <strong>11b</strong> and <strong>12d</strong> are potent agonism of the NQO1 signaling pathway and provide a potential opportunity to improve the treatment of NSCLC.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106075"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106080
Sara Payamifar , Majid Abdouss , Ahmad Poursattar Marjani
Magnetite nanoparticles (MNPs), owing to their vast surface area, low toxicity, and biocompatibility, present a lot of chemical and biotechnological uses. Over the past decade, extensive attention has been expended on applying Fe3O4 nanoparticles as magnetically reusable solid support for various transition metals. The benefits of magnetic nanocatalytics are their simple separation by an external magnet, extreme reactivity, and a vast surface area of the catalysts. Also, the magnetic features of these catalysts induce their dispersion to be reversibly controlled via the magnetic field. Therefore, MNPs can be dispersed well in the reaction media. β-Cyclodextrin (β-CD), as a cyclic oligomer, has been extensively employed as an economical and eco-friendly alternative catalyst in diverse organic conversions that improved reaction efficiency. The modified β-CD with Fe3O4 led to mainly advantageous catalysts because of their helpful catalytic properties, eco-friendliness, easy separation, and ability to isolate from the reaction medium. In this report, our goal is to present an overview of magnetically reusable nanoparticles-based β-CD. This review’s major focus is the application of magnetic nanomaterials as catalysts in different organic transformations.
{"title":"The application of magnetic nanoparticles based β-cyclodextrin as recoverable catalyst in various organic transformations: An overview","authors":"Sara Payamifar , Majid Abdouss , Ahmad Poursattar Marjani","doi":"10.1016/j.arabjc.2024.106080","DOIUrl":"10.1016/j.arabjc.2024.106080","url":null,"abstract":"<div><div>Magnetite nanoparticles (MNPs), owing to their vast surface area, low toxicity, and biocompatibility, present a lot of chemical and biotechnological uses. Over the past decade, extensive attention has been expended on applying Fe<sub>3</sub>O<sub>4</sub> nanoparticles as magnetically reusable solid support for various transition metals. The benefits of magnetic nanocatalytics are their simple separation by an external magnet, extreme reactivity, and a vast surface area of the catalysts. Also, the magnetic features of these catalysts induce their dispersion to be reversibly controlled via the magnetic field. Therefore, MNPs can be dispersed well in the reaction media. β-Cyclodextrin (β-CD), as a cyclic oligomer, has been extensively employed as an economical and eco-friendly alternative catalyst in diverse organic conversions that improved reaction efficiency. The modified β-CD with Fe<sub>3</sub>O<sub>4</sub> led to mainly advantageous catalysts because of their helpful catalytic properties, eco-friendliness, easy separation, and ability to isolate from the reaction medium. In this report, our goal is to present an overview of magnetically reusable nanoparticles-based β-CD. This review’s major focus is the application of magnetic nanomaterials as catalysts in different organic transformations.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106080"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106068
Markus Diantoro , Nuviya Illa Muthi Aturroifah , Joko Utomo , Ishmah Luthfiyah , Ida Hamidah , Brian Yuliarto , Andrivo Rusydi , Worawat Meevesana , Santi Maensiri , Pramod K. Singh
Activated carbon plays a crucial role in enhancing supercapacitor performance by optimizing parameters such as surface area, pore structure, and morphology. This study investigates activated carbon derived from Manihot esculenta tubers, which offers a promising, sponge-like porous morphology suitable for supercapacitor electrodes. Activated carbon derived from Manihot esculenta tubers was synthesized utilizing chemical activation with varying concentrations of potassium hydroxide (KOH) as the activator 0 M (C-S0), 1 M (AC-S1M), 2 M (AC-S2M), and 4 M (AC-S4M). The AC-S4M sample variant achieved the highest surface area (471.645 m2g−1) and total volume (0.253 cm3g−1). Electrochemical characterization using symmetric coin cell supercapacitors demonstrated excellent specific capacitance of 146.570 Fg−1 at 0.1 Ag−1 in a 6 M KOH aqueous electrolyte. Notably, the highest energy density of 15.525 Whkg−1 at a power density of 174.660 Wkg−1 was achieved. These results underscore the potential of Manihot esculenta tubers-derived activated carbon as a sustainable, high-performance electrode material, advancing environmentally friendly energy storage technologies, which remain interesting for further studies.
{"title":"Optimizing sponge-like activated carbon from Manihot esculenta tubers for high-performance supercapacitors","authors":"Markus Diantoro , Nuviya Illa Muthi Aturroifah , Joko Utomo , Ishmah Luthfiyah , Ida Hamidah , Brian Yuliarto , Andrivo Rusydi , Worawat Meevesana , Santi Maensiri , Pramod K. Singh","doi":"10.1016/j.arabjc.2024.106068","DOIUrl":"10.1016/j.arabjc.2024.106068","url":null,"abstract":"<div><div>Activated carbon plays a crucial role in enhancing supercapacitor performance by optimizing parameters such as surface area, pore structure, and morphology. This study investigates activated carbon derived from <em>Manihot esculenta</em> tubers, which offers a promising, sponge-like porous morphology suitable for supercapacitor electrodes. Activated carbon derived from <em>Manihot esculenta</em> tubers was synthesized utilizing chemical activation with varying concentrations of potassium hydroxide (KOH) as the activator 0 M (C-S0), 1 M (AC-S1M), 2 M (AC-S2M), and 4 M (AC-S4M). The AC-S4M sample variant achieved the highest surface area (471.645 m<sup>2</sup>g<sup>−1</sup>) and total volume (0.253 cm<sup>3</sup>g<sup>−1</sup>). Electrochemical characterization using symmetric coin cell supercapacitors demonstrated excellent specific capacitance of 146.570 Fg<sup>−1</sup> at 0.1 Ag<sup>−1</sup> in a 6 M KOH aqueous electrolyte. Notably, the highest energy density of 15.525 Whkg<sup>−1</sup> at a power density of 174.660 Wkg<sup>−1</sup> was achieved. These results underscore the potential of <em>Manihot esculenta</em> tubers-derived activated carbon as a sustainable, high-performance electrode material, advancing environmentally friendly energy storage technologies, which remain interesting for further studies.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106068"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106043
Shaochen Li , Qingyong Zhao , Jianhua Xiong , Nahid Pervez , Lina Lin , Yingjie Cai , Vincenzo Naddeo
Liquid ammonia dyeing emerges as an environmentally benign and sustainable option for the textile industry, characterized by a minimal ecological impact. However, its adoption is hampered by certain limitations, such as suboptimal dye exhaustion and issues with color uniformity, which present significant hurdles to its widespread industrial application. Building on the premise that the addition of water to an ethanol solvent can enhance reactive dye exhaustion in cotton fiber dyeing, this study delves into the dyeing behavior of ramie fiber using a water-liquid ammonia mixture with Reactive Red 195. The incorporation of water into the liquid ammonia solution was observed to marginally decrease the color strength (K/S value) of the dyed ramie fiber, compared to the dyeing with anhydrous liquid ammonia. This reduction is likely due to the diminished expansion of the amorphous regions within the fiber. However, the color levelness of the dyed ramie fiber was enhanced by the addition of water to the liquid ammonia. To decipher the influences on the dyeing process, the Taguchi method, utilizing an orthogonal array (L16), was applied. The analysis revealed that the dye mass factor was the predominant influencer (79.08 %), followed by the liquor ratio factor (18.53 %), with both factors demonstrating statistically significant effects (p < 0.05). A multifaceted analysis of the samples was conducted using advanced techniques such as XRD (X-ray diffraction), FTIR (Fourier transform infrared), TGA (thermogravimetric analysis), and SEM (scanning electron microscopy). These analyses confirmed that the water-liquid ammonia treatment induced changes in the samples’ properties. The treated samples exhibited lower barium activity numbers and breaking force values, indicating structural alterations. Furthermore, the molecular structure of Reactive Red 195 remained intact throughout the dyeing process in the water-liquid ammonia mixture, thereby affirming its viability for practical applications in the textile industry.
{"title":"Influence of water on liquid ammonia-based sustainable dyeing of ramie fiber","authors":"Shaochen Li , Qingyong Zhao , Jianhua Xiong , Nahid Pervez , Lina Lin , Yingjie Cai , Vincenzo Naddeo","doi":"10.1016/j.arabjc.2024.106043","DOIUrl":"10.1016/j.arabjc.2024.106043","url":null,"abstract":"<div><div>Liquid ammonia dyeing emerges as an environmentally benign and sustainable option for the textile industry, characterized by a minimal ecological impact. However, its adoption is hampered by certain limitations, such as suboptimal dye exhaustion and issues with color uniformity, which present significant hurdles to its widespread industrial application. Building on the premise that the addition of water to an ethanol solvent can enhance reactive dye exhaustion in cotton fiber dyeing, this study delves into the dyeing behavior of ramie fiber using a water-liquid ammonia mixture with Reactive Red 195. The incorporation of water into the liquid ammonia solution was observed to marginally decrease the color strength (K/S value) of the dyed ramie fiber, compared to the dyeing with anhydrous liquid ammonia. This reduction is likely due to the diminished expansion of the amorphous regions within the fiber. However, the color levelness of the dyed ramie fiber was enhanced by the addition of water to the liquid ammonia. To decipher the influences on the dyeing process, the Taguchi method, utilizing an orthogonal array (L16), was applied. The analysis revealed that the dye mass factor was the predominant influencer (79.08 %), followed by the liquor ratio factor (18.53 %), with both factors demonstrating statistically significant effects (p < 0.05). A multifaceted analysis of the samples was conducted using advanced techniques such as XRD (X-ray diffraction), FTIR (Fourier transform infrared), TGA (thermogravimetric analysis), and SEM (scanning electron microscopy). These analyses confirmed that the water-liquid ammonia treatment induced changes in the samples’ properties. The treated samples exhibited lower barium activity numbers and breaking force values, indicating structural alterations. Furthermore, the molecular structure of Reactive Red 195 remained intact throughout the dyeing process in the water-liquid ammonia mixture, thereby affirming its viability for practical applications in the textile industry.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106043"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.1016/j.arabjc.2024.106071
Min Gyu Park , Yun Na Kim , Jae sun Lee , Yu Jung Kim , Soo-Yong Kim , Sangho Choi , Min Hye Yang , Bong-Oh Kwon , Jung-Rae Rho , Eun Ju Jeong
It has been reported that the secondary metabolites produced by plants are influenced by genetic diversity and growth conditions, resulting in significant variations in chemical content even within the same species. In the previous study searching for bioactive materials from plants to improve benign prostatic hyperplasia (BPH), it was found that the methanolic extract of Sida rhombifolia in the family of Malvaceae exhibited the excellent inhibition on the expressions of 5-alpha reductase type 2 (5αR2) and androgen receptor (AR) in human prostate cells. In this study, we aimed to evaluate the change in the contents of major components of S. rhombifolia and the activity of improving BPH according to the growth stages of S. rhombifolia. Plant growth characteristics including plant height, stem diameter, leaf length, leaf width, and number of leaves were examined at intervals of approximately 15 days for 51 days. The contents of 20-Hydroxyecdysone and α-Ecdysone, the main constituents contained in S. rhombifolia on each day after transplantation (DAT) were analyzed using LC-ESI-MS/MS. The inhibitory activities of S. rhombifolia stems or leaves at each DAT on the expressions of AR, 5αR2, proliferating cell nuclear antigen (PCNA) and prostate specific antigen (PSA), were evaluated in human originated prostate cells, RWPE-1 and LNCaP cells activated by Testosterone propionate (TP). Considering the yield of the raw materials, the contents of metabolites, and the bioactivities, it was suggested that the appropriate collection period for S. rhombifolia as a bioactive material to improve BPH might be after 90 DAT.
{"title":"Variations in metabolites content and bioactivity to regulate biomarkers of benign prostatic hyperplasia according to the growth stages of Sida rhombifolia","authors":"Min Gyu Park , Yun Na Kim , Jae sun Lee , Yu Jung Kim , Soo-Yong Kim , Sangho Choi , Min Hye Yang , Bong-Oh Kwon , Jung-Rae Rho , Eun Ju Jeong","doi":"10.1016/j.arabjc.2024.106071","DOIUrl":"10.1016/j.arabjc.2024.106071","url":null,"abstract":"<div><div>It has been reported that the secondary metabolites produced by plants are influenced by genetic diversity and growth conditions, resulting in significant variations in chemical content even within the same species. In the previous study searching for bioactive materials from plants to improve benign prostatic hyperplasia (BPH), it was found that the methanolic extract of <em>Sida rhombifolia</em> in the family of Malvaceae exhibited the excellent inhibition on the expressions of 5-alpha reductase type 2 (5αR2) and androgen receptor (AR) in human prostate cells. In this study, we aimed to evaluate the change in the contents of major components of <em>S. rhombifolia</em> and the activity of improving BPH according to the growth stages of <em>S. rhombifolia</em>. Plant growth characteristics including plant height, stem diameter, leaf length, leaf width, and number of leaves were examined at intervals of approximately 15 days for 51 days. The contents of 20-Hydroxyecdysone and α-Ecdysone, the main constituents contained in <em>S. rhombifolia</em> on each day after transplantation (DAT) were analyzed using LC-ESI-MS/MS. The inhibitory activities of <em>S. rhombifolia</em> stems or leaves at each DAT on the expressions of AR, 5αR2, proliferating cell nuclear antigen (PCNA) and prostate specific antigen (PSA), were evaluated in human originated prostate cells, RWPE-1 and LNCaP cells activated by Testosterone propionate (TP). Considering the yield of the raw materials, the contents of metabolites, and the bioactivities, it was suggested that the appropriate collection period for <em>S. rhombifolia</em> as a bioactive material to improve BPH might be after 90 DAT.</div></div>","PeriodicalId":249,"journal":{"name":"Arabian Journal of Chemistry","volume":"18 1","pages":"Article 106071"},"PeriodicalIF":5.3,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}