Mohamed R. Eid , Mohamed Abd El-Aziz , Awatif J. Alqarni , Essam M. Elsaid
{"title":"Numerical analysis for Cattaneo-Christov heat flux on convective viscous non-Newtonian fluid flow through porous medium with nonuniform heat source","authors":"Mohamed R. Eid , Mohamed Abd El-Aziz , Awatif J. Alqarni , Essam M. Elsaid","doi":"10.1016/j.asej.2024.102954","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the Ohmic heating, nonuniform heat generation, and Hall effects with Cattaneo-Christov model (CCM) on flow and heat transfer of power-low non-Newtonian fluids (NNFs) past stretching surface embedded in a porous medium. Runge-Kutta method is used to solve non-linear ODEs numerically using a shooting procedure. We study non-Newtonian fluids for power law values of 0.7 and 1.2, respectively. Innovation of this work lies in studying the effect of Hall currents in presence of buoyancy force and an irregular heat source on slip flow of NNFs moving through Darcy porous medium. Varying velocities, surface frictional forces, and Nusselt numbers are examined. Resulting entropy is also examined using computational flow problem investigation. Model-simulated results suggested that various factors play critical role in constructing thermal systems. It is asserted that Hall parameter, mixed convection parameter, Biot numbers, and thermal relaxation time improve heat transference rates by directly affecting fluid molecules temperature.</p></div>","PeriodicalId":48648,"journal":{"name":"Ain Shams Engineering Journal","volume":"15 10","pages":"Article 102954"},"PeriodicalIF":6.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2090447924003290/pdfft?md5=91e9b5dfdc422b09dc49b524cd636539&pid=1-s2.0-S2090447924003290-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ain Shams Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2090447924003290","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This work investigates the Ohmic heating, nonuniform heat generation, and Hall effects with Cattaneo-Christov model (CCM) on flow and heat transfer of power-low non-Newtonian fluids (NNFs) past stretching surface embedded in a porous medium. Runge-Kutta method is used to solve non-linear ODEs numerically using a shooting procedure. We study non-Newtonian fluids for power law values of 0.7 and 1.2, respectively. Innovation of this work lies in studying the effect of Hall currents in presence of buoyancy force and an irregular heat source on slip flow of NNFs moving through Darcy porous medium. Varying velocities, surface frictional forces, and Nusselt numbers are examined. Resulting entropy is also examined using computational flow problem investigation. Model-simulated results suggested that various factors play critical role in constructing thermal systems. It is asserted that Hall parameter, mixed convection parameter, Biot numbers, and thermal relaxation time improve heat transference rates by directly affecting fluid molecules temperature.
期刊介绍:
in Shams Engineering Journal is an international journal devoted to publication of peer reviewed original high-quality research papers and review papers in both traditional topics and those of emerging science and technology. Areas of both theoretical and fundamental interest as well as those concerning industrial applications, emerging instrumental techniques and those which have some practical application to an aspect of human endeavor, such as the preservation of the environment, health, waste disposal are welcome. The overall focus is on original and rigorous scientific research results which have generic significance.
Ain Shams Engineering Journal focuses upon aspects of mechanical engineering, electrical engineering, civil engineering, chemical engineering, petroleum engineering, environmental engineering, architectural and urban planning engineering. Papers in which knowledge from other disciplines is integrated with engineering are especially welcome like nanotechnology, material sciences, and computational methods as well as applied basic sciences: engineering mathematics, physics and chemistry.