Xin Dai , Lunche Wang , Jie Gong , Zigeng Niu , Qian Cao
{"title":"Extreme weather characteristics and influences on urban ecosystem services in Wuhan Urban Agglomeration","authors":"Xin Dai , Lunche Wang , Jie Gong , Zigeng Niu , Qian Cao","doi":"10.1016/j.geosus.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, there has been a pronounced increase in the frequency of extreme weather events. To comprehensively examine the impact of extreme weather on ecosystem services within the Wuhan Urban Agglomeration (WUA), this study utilized meteorological station data, the Mann-Kendall (MK) test, and the Standardized Precipitation-Evapotranspiration Index (SPEI) to quantify the variation trends in heatwaves (HW) and droughts from 1961 to 2020. Then the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was employed to evaluate and compare the differences in water yield and climate regulation ecosystem services under various HW, droughts, and HW-drought combination scenarios. The results show that over the past 60 years, the temperature, duration, and frequency of HW have significantly increased in the WUA. Specifically, the highest HW temperature, total HW days, HW frequency, and average HW temperature showed changing trend of +0.17 ℃/decade, +1.4 day/decade, +0.19 event/decade, and +0.07 ℃/decade, respectively. The year 2000 was identified as a mutation year for HW, characterized by increased frequency and heightened severity thereafter. The SPEI value exhibited an insignificant upward trend, with 1980 marked as a mutation year, indicating a decreasing trend in drought occurrences after 1980. Heatwaves have a weakening effect on both water yield and climate regulation services, while drought significantly weakened water yield and had a relatively modest effect on climate regulation. During HW-drought composite period, the average monthly water yield showed a notable discrepancy of 60 mm compared to humid years. Besides, as heatwaves intensify, the area of low aggregation for ecosystem services expands, whereas the area of high aggregation decreases. This study provides a preliminary understanding of the impact of urban extreme weather on urban ecosystem services under changing climatic conditions.</div></div>","PeriodicalId":52374,"journal":{"name":"Geography and Sustainability","volume":"6 1","pages":"Article 100201"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geography and Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666683924000476","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been a pronounced increase in the frequency of extreme weather events. To comprehensively examine the impact of extreme weather on ecosystem services within the Wuhan Urban Agglomeration (WUA), this study utilized meteorological station data, the Mann-Kendall (MK) test, and the Standardized Precipitation-Evapotranspiration Index (SPEI) to quantify the variation trends in heatwaves (HW) and droughts from 1961 to 2020. Then the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model was employed to evaluate and compare the differences in water yield and climate regulation ecosystem services under various HW, droughts, and HW-drought combination scenarios. The results show that over the past 60 years, the temperature, duration, and frequency of HW have significantly increased in the WUA. Specifically, the highest HW temperature, total HW days, HW frequency, and average HW temperature showed changing trend of +0.17 ℃/decade, +1.4 day/decade, +0.19 event/decade, and +0.07 ℃/decade, respectively. The year 2000 was identified as a mutation year for HW, characterized by increased frequency and heightened severity thereafter. The SPEI value exhibited an insignificant upward trend, with 1980 marked as a mutation year, indicating a decreasing trend in drought occurrences after 1980. Heatwaves have a weakening effect on both water yield and climate regulation services, while drought significantly weakened water yield and had a relatively modest effect on climate regulation. During HW-drought composite period, the average monthly water yield showed a notable discrepancy of 60 mm compared to humid years. Besides, as heatwaves intensify, the area of low aggregation for ecosystem services expands, whereas the area of high aggregation decreases. This study provides a preliminary understanding of the impact of urban extreme weather on urban ecosystem services under changing climatic conditions.
期刊介绍:
Geography and Sustainability serves as a central hub for interdisciplinary research and education aimed at promoting sustainable development from an integrated geography perspective. By bridging natural and human sciences, the journal fosters broader analysis and innovative thinking on global and regional sustainability issues.
Geography and Sustainability welcomes original, high-quality research articles, review articles, short communications, technical comments, perspective articles and editorials on the following themes:
Geographical Processes: Interactions with and between water, soil, atmosphere and the biosphere and their spatio-temporal variations;
Human-Environmental Systems: Interactions between humans and the environment, resilience of socio-ecological systems and vulnerability;
Ecosystem Services and Human Wellbeing: Ecosystem structure, processes, services and their linkages with human wellbeing;
Sustainable Development: Theory, practice and critical challenges in sustainable development.