Érico Tadao Teramoto , Wilson Wasielesky , Dariano Krummenauer , Guilherme Wolff Bueno , Danilo Cintra Proença , Carlos Augusto Prata Gaona
{"title":"Appling machine learning for estimating total suspended solids in BFT aquaculture system","authors":"Érico Tadao Teramoto , Wilson Wasielesky , Dariano Krummenauer , Guilherme Wolff Bueno , Danilo Cintra Proença , Carlos Augusto Prata Gaona","doi":"10.1016/j.aquaeng.2024.102439","DOIUrl":null,"url":null,"abstract":"<div><p>Biofloc Technology (BFT) systems are used to improve water quality and the production of aquatic organisms, and they influence dissolved oxygen, alkalinity, and pH, directly affecting the efficiency and success of this production system. Measuring total suspended solids (TSS) in water demands substantial investments and involves a time-consuming process to obtain results. This delay in obtaining results poses a significant challenge to the operations of these farms. In this study, we applied Artificial Neural Networks (ANN) and Support Vector Machine (SVM) methods based on artificial intelligence and water quality parameters (easy to measure, low cost, and quick response) to identify the most accurate method for measuring TSS. The best TSS estimate was achieved with SVM using nitrite and turbidity as predictive variables, which tended to overestimate the real value by 19 %, presenting a potential for application in estimating TSS in the BFT aquaculture system.</p></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"106 ","pages":"Article 102439"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860924000505","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Biofloc Technology (BFT) systems are used to improve water quality and the production of aquatic organisms, and they influence dissolved oxygen, alkalinity, and pH, directly affecting the efficiency and success of this production system. Measuring total suspended solids (TSS) in water demands substantial investments and involves a time-consuming process to obtain results. This delay in obtaining results poses a significant challenge to the operations of these farms. In this study, we applied Artificial Neural Networks (ANN) and Support Vector Machine (SVM) methods based on artificial intelligence and water quality parameters (easy to measure, low cost, and quick response) to identify the most accurate method for measuring TSS. The best TSS estimate was achieved with SVM using nitrite and turbidity as predictive variables, which tended to overestimate the real value by 19 %, presenting a potential for application in estimating TSS in the BFT aquaculture system.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints