Soner Kiziloluk , Eser Sert , Mohamed Hammad , Ryszard Tadeusiewicz , Paweł Pławiak
{"title":"EO-CNN: Equilibrium Optimization-Based hyperparameter tuning for enhanced pneumonia and COVID-19 detection using AlexNet and DarkNet19","authors":"Soner Kiziloluk , Eser Sert , Mohamed Hammad , Ryszard Tadeusiewicz , Paweł Pławiak","doi":"10.1016/j.bbe.2024.06.006","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional neural networks<span><span> (CNN) have been increasingly popular in image categorization in recent years. Hyperparameter optimization is a critical stage in enhancing the effectiveness of CNNs and achieving better results. Properly tuning hyperparameters allows the model to exhibit improved performance and facilitates faster learning. Misconfigured hyperparameters can prolong the training time or lead to the model not learning at all. Manually tuning hyperparameters is a time-consuming and challenging process. Automatically adjusting hyperparameters helps save time and resources. This study aims to propose an approach that shows higher classification performance than unoptimized convolutional neural network models<span>, even at low epoch values, by automatically optimizing the hyperparameters of AlexNet and DarkNet19 with equilibrium optimization, the newest metaheuristic algorithm<span><span>. In this respect, the proposed approach optimizes the number and size of filters in the first five convolutional layers in AlexNet and DarkNet19 using an equilibrium </span>optimization algorithm. To evaluate the efficacy of the suggested method, experimental analyses were conducted on the pneumonia and COVID-19 datasets. An important advantage of this approach is its ability to accurately classify medical images. The testing process suggests that utilizing the proposed approach to optimize hyperparameters for AlexNet and DarkNet19 led to a 7% and 4.07% improvement, respectively, in </span></span></span>image classification<span> accuracy compared to non-optimized versions of the same networks. Furthermore, the approach displayed superior classification performance even in a few epochs compared to AlexNet, ShuffleNet, DarkNet19, GoogleNet, MobileNet-V2, VGG-16, VGG-19, ResNet18, and Inceptionv3. As a result, automatic tuning of the hyperparameters of AlexNet and DarkNet-19 with EO enabled the performance of these two models to increase significantly.</span></span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":"44 3","pages":"Pages 635-650"},"PeriodicalIF":5.3000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521624000470","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks (CNN) have been increasingly popular in image categorization in recent years. Hyperparameter optimization is a critical stage in enhancing the effectiveness of CNNs and achieving better results. Properly tuning hyperparameters allows the model to exhibit improved performance and facilitates faster learning. Misconfigured hyperparameters can prolong the training time or lead to the model not learning at all. Manually tuning hyperparameters is a time-consuming and challenging process. Automatically adjusting hyperparameters helps save time and resources. This study aims to propose an approach that shows higher classification performance than unoptimized convolutional neural network models, even at low epoch values, by automatically optimizing the hyperparameters of AlexNet and DarkNet19 with equilibrium optimization, the newest metaheuristic algorithm. In this respect, the proposed approach optimizes the number and size of filters in the first five convolutional layers in AlexNet and DarkNet19 using an equilibrium optimization algorithm. To evaluate the efficacy of the suggested method, experimental analyses were conducted on the pneumonia and COVID-19 datasets. An important advantage of this approach is its ability to accurately classify medical images. The testing process suggests that utilizing the proposed approach to optimize hyperparameters for AlexNet and DarkNet19 led to a 7% and 4.07% improvement, respectively, in image classification accuracy compared to non-optimized versions of the same networks. Furthermore, the approach displayed superior classification performance even in a few epochs compared to AlexNet, ShuffleNet, DarkNet19, GoogleNet, MobileNet-V2, VGG-16, VGG-19, ResNet18, and Inceptionv3. As a result, automatic tuning of the hyperparameters of AlexNet and DarkNet-19 with EO enabled the performance of these two models to increase significantly.
期刊介绍:
Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.