Design of rice with low cadmium accumulation in grain using single segment substitution line

Xue Yuan , Ruiqing Liang , Gan Wang , Shuaipeng Ma , Na Liu , Yongfu Gong , Susan R. Mccouch , Haitao Zhu , Zupei Liu , Zhan Li , GuiFu Liu , Suhong Bu , Guiquan Zhang , Shaokui Wang
{"title":"Design of rice with low cadmium accumulation in grain using single segment substitution line","authors":"Xue Yuan ,&nbsp;Ruiqing Liang ,&nbsp;Gan Wang ,&nbsp;Shuaipeng Ma ,&nbsp;Na Liu ,&nbsp;Yongfu Gong ,&nbsp;Susan R. Mccouch ,&nbsp;Haitao Zhu ,&nbsp;Zupei Liu ,&nbsp;Zhan Li ,&nbsp;GuiFu Liu ,&nbsp;Suhong Bu ,&nbsp;Guiquan Zhang ,&nbsp;Shaokui Wang","doi":"10.1016/j.ncrops.2024.100035","DOIUrl":null,"url":null,"abstract":"<div><p>Rice (<em>Oryza sativa</em> L.) is a major dietary source of cadmium (Cd). Developing rice varieties with reduced Cd levels in the grain is a cost-effective and practical approach to enhance food safety, particularly in regions with high Cd contamination. However, the genetic mechanisms underlying Cd accumulation in rice grains are not fully understood. In this study, we identified eight quantitative trait loci (QTLs) associated with Cd accumulation in rice grains through substitution mapping using single segment substitution lines (SSSLs). These QTLs, named <em>qCd‐2‐1</em>, <em>qCd‐3‐1</em>, <em>qCd‐3‐2</em>, <em>qCd‐5‐1</em>, <em>qCd‐6‐1</em>, <em>qCd‐7‐1</em>, <em>qCd‐8‐1</em>, and <em>qCd‐11‐1</em>, are distributed across seven chromosomes. Notably, the <em>qCd‐5‐1</em> and <em>qCd‐6‐1</em> loci are reported for the first time. We performed a detailed haplotype analysis of candidate genes related to heavy metal metabolism, specifically focusing on Cd accumulation. All SSSLs carrying alleles from donor parents exhibited a significant reduction in Cd accumulation, with additive effects ranging from −0.061 to −0.105. To further develop rice varieties with lower Cd accumulation in the grain, we developed six pyramided lines through crossing and marker-assisted selection. These pyramided lines showed significantly reduced Cd content in the grain compared to the elite <em>indica</em> recurrent parent, Huajingxian74 (HJX74). Importantly, most agronomic characteristics of the pyramided lines were similar to those of HJX74. In conclusion, this study demonstrates that identifying and pyramiding QTLs associated with reduced Cd accumulation is an effective strategy for developing rice varieties with lower Cd content in the grain.</p></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949952624000256/pdfft?md5=61cdc6f2ccf2f2c4cb569ac619d06707&pid=1-s2.0-S2949952624000256-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Rice (Oryza sativa L.) is a major dietary source of cadmium (Cd). Developing rice varieties with reduced Cd levels in the grain is a cost-effective and practical approach to enhance food safety, particularly in regions with high Cd contamination. However, the genetic mechanisms underlying Cd accumulation in rice grains are not fully understood. In this study, we identified eight quantitative trait loci (QTLs) associated with Cd accumulation in rice grains through substitution mapping using single segment substitution lines (SSSLs). These QTLs, named qCd‐2‐1, qCd‐3‐1, qCd‐3‐2, qCd‐5‐1, qCd‐6‐1, qCd‐7‐1, qCd‐8‐1, and qCd‐11‐1, are distributed across seven chromosomes. Notably, the qCd‐5‐1 and qCd‐6‐1 loci are reported for the first time. We performed a detailed haplotype analysis of candidate genes related to heavy metal metabolism, specifically focusing on Cd accumulation. All SSSLs carrying alleles from donor parents exhibited a significant reduction in Cd accumulation, with additive effects ranging from −0.061 to −0.105. To further develop rice varieties with lower Cd accumulation in the grain, we developed six pyramided lines through crossing and marker-assisted selection. These pyramided lines showed significantly reduced Cd content in the grain compared to the elite indica recurrent parent, Huajingxian74 (HJX74). Importantly, most agronomic characteristics of the pyramided lines were similar to those of HJX74. In conclusion, this study demonstrates that identifying and pyramiding QTLs associated with reduced Cd accumulation is an effective strategy for developing rice varieties with lower Cd content in the grain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用单段替代系设计谷粒中镉积累量低的水稻
水稻(Oryza sativa L.)是镉(Cd)的主要膳食来源。特别是在镉污染严重的地区,开发谷物中镉含量降低的水稻品种是提高食品安全的一种具有成本效益的实用方法。然而,稻谷中镉积累的遗传机制尚未完全明了。在这项研究中,我们通过使用单节段替代系(SSSLs)进行替代图谱绘制,确定了八个与稻谷镉积累相关的数量性状位点(QTLs)。这些 QTL 分布在 7 条染色体上,分别被命名为 qCd-2-1、qCd-3-1、qCd-3-2、qCd-5-1、qCd-6-1、qCd-7-1、qCd-8-1 和 qCd-11-1。值得注意的是,qCd-5-1 和 qCd-6-1 位点是首次报道。我们对与重金属代谢相关的候选基因进行了详细的单倍型分析,尤其侧重于镉的积累。所有携带供体亲本等位基因的 SSSL 都表现出镉积累的显著降低,加性效应从-0.061 到-0.105 不等。为了进一步培育谷粒中镉积累量更低的水稻品种,我们通过杂交和标记辅助选择培育出了六个金字塔型品系。与优良籼稻复交亲本华恢74(HJX74)相比,这些金字塔型品系的谷粒中镉含量明显降低。重要的是,金字塔型品系的大多数农艺性状与 HJX74 相似。总之,本研究表明,鉴定与减少镉积累相关的 QTLs 并将其进行分层是培育谷粒中镉含量较低的水稻品种的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meiosis in plants: From understanding to manipulation Perspectives on developing natural colored cotton through carotenoid biofortification Genome-wide characterization, identification, and isolation of auxin response factor (ARF) gene family in maize Precise control of falling flowers and fruits is a key part of improving quality and efficiency Molecular mechanisms of rice seed germination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1