Effect of monovalent/divalent ions and SiO2-based nanocomposite dosage on thermochemical stability of HPAM polymeric solutions

IF 4.2 Q2 ENERGY & FUELS Petroleum Pub Date : 2024-12-01 DOI:10.1016/j.petlm.2024.07.001
Jhon F. Gallego , Lady J. Giraldo , Henderson I. Quintero , Hugo A. García , Karol Zapata , Samira Heidari , Masoud Riazi , Camilo A. Franco , Farid B. Cortés
{"title":"Effect of monovalent/divalent ions and SiO2-based nanocomposite dosage on thermochemical stability of HPAM polymeric solutions","authors":"Jhon F. Gallego ,&nbsp;Lady J. Giraldo ,&nbsp;Henderson I. Quintero ,&nbsp;Hugo A. García ,&nbsp;Karol Zapata ,&nbsp;Samira Heidari ,&nbsp;Masoud Riazi ,&nbsp;Camilo A. Franco ,&nbsp;Farid B. Cortés","doi":"10.1016/j.petlm.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study evaluated the effect of monovalent and divalent ions and the dosage of a SiO<sub>2</sub>-based nanocomposite on the thermochemical stability of HPAM polymeric solution. Chelating amine–functionalized NPs (AFNPs) were used to enhance the thermochemical stability of HPAM based on capturing monovalent/divalent ions after seven days at 70°C. Different polymer solutions prepared with calcium chloride dihydrate (CaCl<sub>2</sub>·2H<sub>2</sub>O) at 2000 mg/L and sodium chloride (NaCl) at 10000 mg/L, and two different dosages of HPAM (1000 and 2000 mg/L) were assessed in the presence and absence of AFNPs at dosages of 200, 500 and 1000 mg/L. The nanocomposite was characterized by N<sub>2</sub> adsorption, Fourier-transformed infrared spectrophotometry (FTIR), thermogravimetric analysis (TGA), dynamic Light Scattering (DLS), and Zeta potential (ZP). Stability tests over time confirmed the positive effect of nanocomposite on increasing the thermochemical stability of polymer solutions. Results revealed that adding 0, 200, and 500 mg/L of nanocomposite to the polymeric solution at 1000 mg/L of HPAM, 10000 mg/L of NaCl, and 2000 mg/L of CaCl<sub>2</sub>·2H<sub>2</sub>O led to the viscosity reductions of 73.5%, 18%, and less than 1% after 7 days (70°C), respectively. Nanocomposite at 200 mg/L reduces the polymer degradation in the presence of the two salts evaluated separately, i.e., 20% for 10000 mg/L of NaCl and 15% for 2000 mg/L of CaCl<sub>2</sub>·2H<sub>2</sub>O. The adsorption tests on AFNPs and SiO<sub>2</sub> NPs concluded that AFNPs had higher adsorption of cations in comparison to SiO<sub>2</sub> NPs and that greater adsorption of cations is related to a reduction in polymer degradation.</div></div>","PeriodicalId":37433,"journal":{"name":"Petroleum","volume":"10 4","pages":"Pages 719-735"},"PeriodicalIF":4.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405656124000300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study evaluated the effect of monovalent and divalent ions and the dosage of a SiO2-based nanocomposite on the thermochemical stability of HPAM polymeric solution. Chelating amine–functionalized NPs (AFNPs) were used to enhance the thermochemical stability of HPAM based on capturing monovalent/divalent ions after seven days at 70°C. Different polymer solutions prepared with calcium chloride dihydrate (CaCl2·2H2O) at 2000 mg/L and sodium chloride (NaCl) at 10000 mg/L, and two different dosages of HPAM (1000 and 2000 mg/L) were assessed in the presence and absence of AFNPs at dosages of 200, 500 and 1000 mg/L. The nanocomposite was characterized by N2 adsorption, Fourier-transformed infrared spectrophotometry (FTIR), thermogravimetric analysis (TGA), dynamic Light Scattering (DLS), and Zeta potential (ZP). Stability tests over time confirmed the positive effect of nanocomposite on increasing the thermochemical stability of polymer solutions. Results revealed that adding 0, 200, and 500 mg/L of nanocomposite to the polymeric solution at 1000 mg/L of HPAM, 10000 mg/L of NaCl, and 2000 mg/L of CaCl2·2H2O led to the viscosity reductions of 73.5%, 18%, and less than 1% after 7 days (70°C), respectively. Nanocomposite at 200 mg/L reduces the polymer degradation in the presence of the two salts evaluated separately, i.e., 20% for 10000 mg/L of NaCl and 15% for 2000 mg/L of CaCl2·2H2O. The adsorption tests on AFNPs and SiO2 NPs concluded that AFNPs had higher adsorption of cations in comparison to SiO2 NPs and that greater adsorption of cations is related to a reduction in polymer degradation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单价/二价离子和基于二氧化硅的纳米复合材料用量对 HPAM 聚合物溶液热化学稳定性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Petroleum
Petroleum Earth and Planetary Sciences-Geology
CiteScore
9.20
自引率
0.00%
发文量
76
审稿时长
124 days
期刊介绍: Examples of appropriate topical areas that will be considered include the following: 1.comprehensive research on oil and gas reservoir (reservoir geology): -geological basis of oil and gas reservoirs -reservoir geochemistry -reservoir formation mechanism -reservoir identification methods and techniques 2.kinetics of oil and gas basins and analyses of potential oil and gas resources: -fine description factors of hydrocarbon accumulation -mechanism analysis on recovery and dynamic accumulation process -relationship between accumulation factors and the accumulation process -analysis of oil and gas potential resource 3.theories and methods for complex reservoir geophysical prospecting: -geophysical basis of deep geologic structures and background of hydrocarbon occurrence -geophysical prediction of deep and complex reservoirs -physical test analyses and numerical simulations of reservoir rocks -anisotropic medium seismic imaging theory and new technology for multiwave seismic exploration -o theories and methods for reservoir fluid geophysical identification and prediction 4.theories, methods, technology, and design for complex reservoir development: -reservoir percolation theory and application technology -field development theories and methods -theory and technology for enhancing recovery efficiency 5.working liquid for oil and gas wells and reservoir protection technology: -working chemicals and mechanics for oil and gas wells -reservoir protection technology 6.new techniques and technologies for oil and gas drilling and production: -under-balanced drilling/gas drilling -special-track well drilling -cementing and completion of oil and gas wells -engineering safety applications for oil and gas wells -new technology of fracture acidizing
期刊最新文献
Active control of the fluid pulse based on the FxLMS On how water injection may induce fault reactivation and slippage: A numerical method Research on corrosion defect identification and risk assessment of well control equipment based on a machine learning algorithm Novel phase field model of hydraulic fracture propagation in poroelastic media and numerical investigation of interaction between hydraulic fracture and natural fracture Study on the mechanism of gas-water two-phase flow in carbonate reservoirs at pore scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1