{"title":"An efficient multi-objective UAV assisted RSU deployment (MOURD) scheme for VANET","authors":"Samkit Jain, Vinod Kumar Jain, Subodh Mishra","doi":"10.1016/j.adhoc.2024.103598","DOIUrl":null,"url":null,"abstract":"<div><p>A Roadside Unit (RSU) serves as essential infrastructure in Vehicular Ad Hoc Networks (VANETs) that supports the goals of Intelligent Transportation Systems (ITS) by providing safety services, shared storage, and enhanced internet connectivity to vehicular users, drivers, and pedestrians. Additionally, the efficiency of VANETs, concerning network service utility and latency, depends on the relative positioning of these RSUs within the network topology. Most existing RSU deployment approaches deal with a single objective, either enhancing network service utility or minimizing the latency. For instance, some studies suggest deploying RSUs in high-traffic road segments that enhance network service utility but lead to higher latency. Conversely, some suggest deploying the RSUs in low-traffic road segments that minimize the network latency, but there will be low network service utility. Hence, there exists a trade-off between these two conflicting objectives in VANETs, and none of the studies address both objectives simultaneously. To achieve the balance between these two objectives, this paper proposes a Multi-Objective UAV assisted RSU Deployment (MOURD) scheme that leverages the Unmanned Aerial Vehicles (UAVs) for VANET efficiency. The MOURD scheme statically places RSUs in high-traffic road segments and dynamically dispatches the UAVs in low-traffic road segments to facilitate seamless network coverage and minimize the overall network latency. The simulation results on the road network of Delhi, India, demonstrate the effectiveness of the proposed MOURD scheme compared to other benchmark RSU & UAV deployment approaches. MOURD scheme outperforms on an average of 17.42%, 13.29%, 15.67% and 6.23% in terms of vehicle connection time, packet delivery ratio, throughput, and latency, respectively.</p></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"163 ","pages":"Article 103598"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002099","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
A Roadside Unit (RSU) serves as essential infrastructure in Vehicular Ad Hoc Networks (VANETs) that supports the goals of Intelligent Transportation Systems (ITS) by providing safety services, shared storage, and enhanced internet connectivity to vehicular users, drivers, and pedestrians. Additionally, the efficiency of VANETs, concerning network service utility and latency, depends on the relative positioning of these RSUs within the network topology. Most existing RSU deployment approaches deal with a single objective, either enhancing network service utility or minimizing the latency. For instance, some studies suggest deploying RSUs in high-traffic road segments that enhance network service utility but lead to higher latency. Conversely, some suggest deploying the RSUs in low-traffic road segments that minimize the network latency, but there will be low network service utility. Hence, there exists a trade-off between these two conflicting objectives in VANETs, and none of the studies address both objectives simultaneously. To achieve the balance between these two objectives, this paper proposes a Multi-Objective UAV assisted RSU Deployment (MOURD) scheme that leverages the Unmanned Aerial Vehicles (UAVs) for VANET efficiency. The MOURD scheme statically places RSUs in high-traffic road segments and dynamically dispatches the UAVs in low-traffic road segments to facilitate seamless network coverage and minimize the overall network latency. The simulation results on the road network of Delhi, India, demonstrate the effectiveness of the proposed MOURD scheme compared to other benchmark RSU & UAV deployment approaches. MOURD scheme outperforms on an average of 17.42%, 13.29%, 15.67% and 6.23% in terms of vehicle connection time, packet delivery ratio, throughput, and latency, respectively.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.