Numerical study on piezoelectric inkjet with liquid compressibility

San Kim, D. Sohn, Han Seo Ko
{"title":"Numerical study on piezoelectric inkjet with liquid compressibility","authors":"San Kim, D. Sohn, Han Seo Ko","doi":"10.1063/5.0213865","DOIUrl":null,"url":null,"abstract":"A two-dimensional numerical model for a cylindrical piezoelectric inkjet was developed to analyze the ink droplet formation and meniscus behavior, considering the ink compressibility. The propagation of the acoustic pressure wave, which was generated by the piezo actuator, could be simulated by considering the compressibility of the ink. The volume of fluid method was employed for multiphase flow, while the dynamic mesh method was used to implement the piezo actuation. In this study, the key operational parameters of operating voltage, compressibility of working fluid, dwell time of waveform, contact angle, and restrictor dimensions were varied to conduct a comprehensive parametric analysis. The underlying mechanism governing droplet formation could be identified through the analysis of the propagation of successive acoustic pressure waves. Furthermore, the volume fraction and mass flow rate results were used to analyze the jetting performances quantitatively and qualitatively. The mass flow rate results were used to determine the implicit effect of physical properties, such as the viscosity and surface tension, through momentum analysis. The developed model including ink compressibility accurately predicted the behavior of the inkjet jetting and the meniscus motion. In addition, it allows visualization of the internal flow structure and optimization of operating conditions to increase the stability and productivity of inkjet printing.","PeriodicalId":509470,"journal":{"name":"Physics of Fluids","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0213865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A two-dimensional numerical model for a cylindrical piezoelectric inkjet was developed to analyze the ink droplet formation and meniscus behavior, considering the ink compressibility. The propagation of the acoustic pressure wave, which was generated by the piezo actuator, could be simulated by considering the compressibility of the ink. The volume of fluid method was employed for multiphase flow, while the dynamic mesh method was used to implement the piezo actuation. In this study, the key operational parameters of operating voltage, compressibility of working fluid, dwell time of waveform, contact angle, and restrictor dimensions were varied to conduct a comprehensive parametric analysis. The underlying mechanism governing droplet formation could be identified through the analysis of the propagation of successive acoustic pressure waves. Furthermore, the volume fraction and mass flow rate results were used to analyze the jetting performances quantitatively and qualitatively. The mass flow rate results were used to determine the implicit effect of physical properties, such as the viscosity and surface tension, through momentum analysis. The developed model including ink compressibility accurately predicted the behavior of the inkjet jetting and the meniscus motion. In addition, it allows visualization of the internal flow structure and optimization of operating conditions to increase the stability and productivity of inkjet printing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带液体可压缩性的压电喷墨的数值研究
考虑到墨水的可压缩性,建立了圆柱形压电喷墨的二维数值模型,以分析墨滴的形成和半月板行为。考虑到墨水的可压缩性,可以模拟由压电致动器产生的声压波的传播。多相流采用流体体积法,压电致动器采用动态网格法。本研究改变了工作电压、工作流体可压缩性、波形停留时间、接触角和限流器尺寸等关键运行参数,以进行全面的参数分析。通过分析连续声压波的传播,可以确定液滴形成的基本机制。此外,还利用体积分数和质量流量结果对喷射性能进行了定量和定性分析。质量流量结果用于通过动量分析确定物理特性(如粘度和表面张力)的隐含影响。所开发的模型包括墨水可压缩性,准确预测了喷墨喷射和半月板运动的行为。此外,该模型还可实现内部流动结构的可视化,并优化操作条件,从而提高喷墨打印的稳定性和生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A unified macroscopic equation for creeping, inertial, transitional, and turbulent fluid flows through porous media Systematical study on the aerodynamic control mechanisms of a 1:2 rectangular cylinder with Kirigami scales Mathematical modeling of creeping electromagnetohydrodynamic peristaltic propulsion in an annular gap between sinusoidally deforming permeable and impermeable curved tubes Effect of diversion angle and vanes' skew angle on the hydro-morpho-dynamics of mobile-bed open-channel bifurcations controlled by submerged vane-fields Direct numerical simulations of pure and partially cracked ammonia/air turbulent premixed jet flames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1