{"title":"Infrared Reflection-Absorption Spectroscopy (IRRAS) applied to oxides: Ceria as a case study","authors":"Chengwu Yang , Christof Wöll","doi":"10.1016/j.susc.2024.122550","DOIUrl":null,"url":null,"abstract":"<div><p>Infrared Reflection-Absorption Spectroscopy (IRRAS), a pivotal tool in the study of the surface chemistry of metals, has recently also gained substantial impact for oxide surfaces, despite the inherent challenges originating from their dielectric properties. This review focuses on the application of IRRAS to ceria (CeO<sub>2</sub>), a metal oxide for which a significant amount of experimental data exists. We elaborate on the differences in optical properties between metals and metal oxides, which result in lower intensity of adsorbate vibrational bands by approximately two orders of magnitude and polarization-dependent shifts of vibrational frequencies. We examine how the surface selection rule, governing IR spectroscopy of adsorbates on metals, contrasts sharply with the behavior of dielectrics where both positive and negative vibrational bands can occur, and how IRRAS can capture vibrations with transition dipole moments oriented parallel to the surface—a capability not feasible on metallic surfaces. Finally, this paper explores the broader implications of these findings for enhancing our understanding of molecule interactions on oxide surfaces, and for using IR spectroscopy for operando studies under technologically relevant conditions.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"749 ","pages":"Article 122550"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0039602824001018/pdfft?md5=8c629e3edbfb98fbddf8b69335775831&pid=1-s2.0-S0039602824001018-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001018","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared Reflection-Absorption Spectroscopy (IRRAS), a pivotal tool in the study of the surface chemistry of metals, has recently also gained substantial impact for oxide surfaces, despite the inherent challenges originating from their dielectric properties. This review focuses on the application of IRRAS to ceria (CeO2), a metal oxide for which a significant amount of experimental data exists. We elaborate on the differences in optical properties between metals and metal oxides, which result in lower intensity of adsorbate vibrational bands by approximately two orders of magnitude and polarization-dependent shifts of vibrational frequencies. We examine how the surface selection rule, governing IR spectroscopy of adsorbates on metals, contrasts sharply with the behavior of dielectrics where both positive and negative vibrational bands can occur, and how IRRAS can capture vibrations with transition dipole moments oriented parallel to the surface—a capability not feasible on metallic surfaces. Finally, this paper explores the broader implications of these findings for enhancing our understanding of molecule interactions on oxide surfaces, and for using IR spectroscopy for operando studies under technologically relevant conditions.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.